taneemishere commited on
Commit
31c555d
·
1 Parent(s): dd5e80c
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
__pycache__/main_program.cpython-38.pyc ADDED
Binary file (2.69 kB). View file
 
classes/__pycache__/Utils.cpython-38.pyc CHANGED
Binary files a/classes/__pycache__/Utils.cpython-38.pyc and b/classes/__pycache__/Utils.cpython-38.pyc differ
 
classes/model/.DS_Store ADDED
Binary file (6.15 kB). View file
 
classes/model/pix2code2.py DELETED
@@ -1,70 +0,0 @@
1
- __author__ = 'Ferdiand John Briones, attempt at pix2code2 through pretrained autoencoders'
2
-
3
- !pip install tensorflow
4
- import tensorflow
5
- from tensorflow import keras
6
- from keras.layers import Input, Dense, Dropout, RepeatVector, LSTM, concatenate, Flatten
7
- from keras.models import Sequential, Model
8
- from tensorflow.keras.optimizers import RMSprop
9
- from keras import *
10
- from .Config import *
11
- from .AModel import *
12
- from .autoencoder_image import *
13
-
14
- class pix2code2(AModel):
15
- def __init__(self, input_shape, output_size, output_path):
16
- AModel.__init__(self, input_shape, output_size, output_path)
17
- self.name = "pix2code2"
18
-
19
- visual_input = Input(shape=input_shape)
20
-
21
- #Load the pre-trained autoencoder model
22
- autoencoder_model = autoencoder_image(input_shape, input_shape, output_path)
23
- autoencoder_model.load('autoencoder')
24
- autoencoder_model.model.load_weights('../bin/autoencoder.h5')
25
-
26
- #Get only the model up to the encoded part
27
- hidden_layer_model_freeze = Model(inputs=autoencoder_model.model.input, outputs=autoencoder_model.model.get_layer('encoded_layer').output)
28
- hidden_layer_input = hidden_layer_model_freeze(visual_input)
29
-
30
- #Additional layers before concatenation
31
- hidden_layer_model = Flatten()(hidden_layer_input)
32
- hidden_layer_model = Dense(1024, activation='relu')(hidden_layer_model)
33
- hidden_layer_model = Dropout(0.3)(hidden_layer_model)
34
- hidden_layer_model = Dense(1024, activation='relu')(hidden_layer_model)
35
- hidden_layer_model = Dropout(0.3)(hidden_layer_model)
36
- hidden_layer_result = RepeatVector(CONTEXT_LENGTH)(hidden_layer_model)
37
-
38
- #Make sure the loaded hidden_layer_model_freeze will no longer be updated
39
- for layer in hidden_layer_model_freeze.layers:
40
- layer.trainable = False
41
-
42
- #The same language model that of pix2code by Tony Beltramelli
43
- language_model = Sequential()
44
- language_model.add(LSTM(128, return_sequences=True, input_shape=(CONTEXT_LENGTH, output_size)))
45
- language_model.add(LSTM(128, return_sequences=True))
46
-
47
- textual_input = Input(shape=(CONTEXT_LENGTH, output_size))
48
- encoded_text = language_model(textual_input)
49
-
50
- decoder = concatenate([hidden_layer_result, encoded_text])
51
-
52
- decoder = LSTM(512, return_sequences=True)(decoder)
53
- decoder = LSTM(512, return_sequences=False)(decoder)
54
- decoder = Dense(output_size, activation='softmax')(decoder)
55
-
56
- self.model = Model(inputs=[visual_input, textual_input], outputs=decoder)
57
-
58
- optimizer = RMSprop(lr=0.0001, clipvalue=1.0)
59
- self.model.compile(loss='categorical_crossentropy', optimizer=optimizer)
60
-
61
- def fit_generator(self, generator, steps_per_epoch):
62
- self.model.summary()
63
- self.model.fit_generator(generator, steps_per_epoch=steps_per_epoch, epochs=EPOCHS, verbose=1)
64
- self.save()
65
-
66
- def predict(self, image, partial_caption):
67
- return self.model.predict([image, partial_caption], verbose=0)[0]
68
-
69
- def predict_batch(self, images, partial_captions):
70
- return self.model.predict([images, partial_captions], verbose=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
main_program.py CHANGED
@@ -5,7 +5,7 @@ import os.path
5
  from os.path import basename
6
 
7
  from classes.Sampler import *
8
- from classes.model.pix2code2 import *
9
 
10
 
11
  def code_gen(path_to_input_image):
 
5
  from os.path import basename
6
 
7
  from classes.Sampler import *
8
+ #from classes.model.pix2code2 import *
9
 
10
 
11
  def code_gen(path_to_input_image):