File size: 2,862 Bytes
0d7f4b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
__author__ = 'Ferdiand John Briones, attempt at pix2code2 through pretrained autoencoders'

from keras.layers import Input, Dense, Dropout, RepeatVector, LSTM, concatenate, Flatten
from keras.models import Sequential, Model
from tensorflow.keras.optimizers import RMSprop
from keras import *
from .Config import *
from .AModel import *
from .autoencoder_image import *

class pix2code2(AModel):
	def __init__(self, input_shape, output_size, output_path):
		AModel.__init__(self, input_shape, output_size, output_path)
		self.name = "pix2code2"

		visual_input = Input(shape=input_shape)

		#Load the pre-trained autoencoder model
		autoencoder_model = autoencoder_image(input_shape, input_shape, output_path)
		autoencoder_model.load('autoencoder')
		autoencoder_model.model.load_weights('../bin/autoencoder.h5')

		#Get only the model up to the encoded part
		hidden_layer_model_freeze = Model(inputs=autoencoder_model.model.input, outputs=autoencoder_model.model.get_layer('encoded_layer').output)
		hidden_layer_input = hidden_layer_model_freeze(visual_input)
		
		#Additional layers before concatenation
		hidden_layer_model = Flatten()(hidden_layer_input)
		hidden_layer_model = Dense(1024, activation='relu')(hidden_layer_model)
		hidden_layer_model = Dropout(0.3)(hidden_layer_model)
		hidden_layer_model = Dense(1024, activation='relu')(hidden_layer_model)
		hidden_layer_model = Dropout(0.3)(hidden_layer_model)
		hidden_layer_result = RepeatVector(CONTEXT_LENGTH)(hidden_layer_model)

		#Make sure the loaded hidden_layer_model_freeze will no longer be updated
		for layer in hidden_layer_model_freeze.layers:
			layer.trainable = False

		#The same language model that of pix2code by Tony Beltramelli
		language_model = Sequential()
		language_model.add(LSTM(128, return_sequences=True, input_shape=(CONTEXT_LENGTH, output_size)))
		language_model.add(LSTM(128, return_sequences=True))

		textual_input = Input(shape=(CONTEXT_LENGTH, output_size))
		encoded_text = language_model(textual_input)

		decoder = concatenate([hidden_layer_result, encoded_text])

		decoder = LSTM(512, return_sequences=True)(decoder)
		decoder = LSTM(512, return_sequences=False)(decoder)
		decoder = Dense(output_size, activation='softmax')(decoder)

		self.model = Model(inputs=[visual_input, textual_input], outputs=decoder)

		optimizer = RMSprop(lr=0.0001, clipvalue=1.0)
		self.model.compile(loss='categorical_crossentropy', optimizer=optimizer)

	def fit_generator(self, generator, steps_per_epoch):
		self.model.summary()
		self.model.fit_generator(generator, steps_per_epoch=steps_per_epoch, epochs=EPOCHS, verbose=1)
		self.save()

	def predict(self, image, partial_caption):
		return self.model.predict([image, partial_caption], verbose=0)[0]

	def predict_batch(self, images, partial_captions):
		return self.model.predict([images, partial_captions], verbose=1)