import os import sys import io,time from fastapi import FastAPI, Response, File, UploadFile, Form from fastapi.responses import HTMLResponse from contextlib import asynccontextmanager ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append('{}/../..'.format(ROOT_DIR)) sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR)) from cosyvoice.cli.cosyvoice import CosyVoice from cosyvoice.utils.file_utils import load_wav import numpy as np import torch import torchaudio import logging logging.getLogger('matplotlib').setLevel(logging.WARNING) class LaunchFailed(Exception): pass @asynccontextmanager async def lifespan(app: FastAPI): model_dir = os.getenv("MODEL_DIR", "pretrained_models/CosyVoice-300M-SFT") if model_dir: logging.info("MODEL_DIR is {}", model_dir) app.cosyvoice = CosyVoice('../../'+model_dir) # sft usage logging.info("Avaliable speakers {}", app.cosyvoice.list_avaliable_spks()) else: raise LaunchFailed("MODEL_DIR environment must set") yield app = FastAPI(lifespan=lifespan) def buildResponse(output): buffer = io.BytesIO() torchaudio.save(buffer, output, 22050, format="wav") buffer.seek(0) return Response(content=buffer.read(-1), media_type="audio/wav") @app.post("/api/inference/sft") @app.get("/api/inference/sft") async def sft(tts: str = Form(), role: str = Form()): start = time.process_time() output = app.cosyvoice.inference_sft(tts, role) end = time.process_time() logging.info("infer time is {} seconds", end-start) return buildResponse(output['tts_speech']) @app.post("/api/inference/zero-shot") async def zeroShot(tts: str = Form(), prompt: str = Form(), audio: UploadFile = File()): start = time.process_time() prompt_speech = load_wav(audio.file, 16000) prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes() prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0) prompt_speech_16k = prompt_speech_16k.float() / (2**15) output = app.cosyvoice.inference_zero_shot(tts, prompt, prompt_speech_16k) end = time.process_time() logging.info("infer time is {} seconds", end-start) return buildResponse(output['tts_speech']) @app.post("/api/inference/cross-lingual") async def crossLingual(tts: str = Form(), audio: UploadFile = File()): start = time.process_time() prompt_speech = load_wav(audio.file, 16000) prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes() prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0) prompt_speech_16k = prompt_speech_16k.float() / (2**15) output = app.cosyvoice.inference_cross_lingual(tts, prompt_speech_16k) end = time.process_time() logging.info("infer time is {} seconds", end-start) return buildResponse(output['tts_speech']) @app.post("/api/inference/instruct") @app.get("/api/inference/instruct") async def instruct(tts: str = Form(), role: str = Form(), instruct: str = Form()): start = time.process_time() output = app.cosyvoice.inference_instruct(tts, role, instruct) end = time.process_time() logging.info("infer time is {} seconds", end-start) return buildResponse(output['tts_speech']) @app.get("/api/roles") async def roles(): return {"roles": app.cosyvoice.list_avaliable_spks()} @app.get("/", response_class=HTMLResponse) async def root(): return """ Api information Get the supported tones from the Roles API first, then enter the tones and textual content in the TTS API for synthesis. Documents of API """