# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append('{}/../../..'.format(ROOT_DIR)) sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR)) from concurrent import futures import argparse import cosyvoice_pb2 import cosyvoice_pb2_grpc import logging logging.getLogger('matplotlib').setLevel(logging.WARNING) import grpc import torch import numpy as np from cosyvoice.cli.cosyvoice import CosyVoice logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s') class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer): def __init__(self, args): self.cosyvoice = CosyVoice(args.model_dir) logging.info('grpc service initialized') def Inference(self, request, context): if request.HasField('sft_request'): logging.info('get sft inference request') model_output = self.cosyvoice.inference_sft(request.sft_request.tts_text, request.sft_request.spk_id) elif request.HasField('zero_shot_request'): logging.info('get zero_shot inference request') prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(request.zero_shot_request.prompt_audio, dtype=np.int16))).unsqueeze(dim=0) prompt_speech_16k = prompt_speech_16k.float() / (2**15) model_output = self.cosyvoice.inference_zero_shot(request.zero_shot_request.tts_text, request.zero_shot_request.prompt_text, prompt_speech_16k) elif request.HasField('cross_lingual_request'): logging.info('get cross_lingual inference request') prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(request.cross_lingual_request.prompt_audio, dtype=np.int16))).unsqueeze(dim=0) prompt_speech_16k = prompt_speech_16k.float() / (2**15) model_output = self.cosyvoice.inference_cross_lingual(request.cross_lingual_request.tts_text, prompt_speech_16k) else: logging.info('get instruct inference request') model_output = self.cosyvoice.inference_instruct(request.instruct_request.tts_text, request.instruct_request.spk_id, request.instruct_request.instruct_text) logging.info('send inference response') for i in model_output: response = cosyvoice_pb2.Response() response.tts_audio = (i['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes() yield response def main(): grpcServer = grpc.server(futures.ThreadPoolExecutor(max_workers=args.max_conc), maximum_concurrent_rpcs=args.max_conc) cosyvoice_pb2_grpc.add_CosyVoiceServicer_to_server(CosyVoiceServiceImpl(args), grpcServer) grpcServer.add_insecure_port('0.0.0.0:{}'.format(args.port)) grpcServer.start() logging.info("server listening on 0.0.0.0:{}".format(args.port)) grpcServer.wait_for_termination() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--port', type=int, default=50000) parser.add_argument('--max_conc', type=int, default=4) parser.add_argument('--model_dir', type=str, default='iic/CosyVoice-300M', help='local path or modelscope repo id') args = parser.parse_args() main()