#!/bin/bash # Copyright 2024 Alibaba Inc. All Rights Reserved. . ./path.sh || exit 1; stage=-1 stop_stage=3 data_url=www.openslr.org/resources/60 data_dir=/mnt/lyuxiang.lx/data/tts/openslr/libritts pretrained_model_dir=../../../pretrained_models/CosyVoice-300M if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then echo "Data Download" for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do local/download_and_untar.sh ${data_dir} ${data_url} ${part} done fi if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt" for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do mkdir -p data/$x python local/prepare_data.py --src_dir $data_dir/LibriTTS/$x --des_dir data/$x done fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir" for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do tools/extract_embedding.py --dir data/$x \ --onnx_path $pretrained_model_dir/campplus.onnx done fi if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir" for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do tools/extract_speech_token.py --dir data/$x \ --onnx_path $pretrained_model_dir/speech_tokenizer_v1.onnx done fi if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt" for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do mkdir -p data/$x/parquet tools/make_parquet_list.py --num_utts_per_parquet 1000 \ --num_processes 10 \ --src_dir data/$x \ --des_dir data/$x/parquet done fi # inference if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then echo "Run inference. Please make sure utt in tts_text is in prompt_data" for mode in sft zero_shot; do python cosyvoice/bin/inference.py --mode $mode \ --gpu 0 \ --config conf/cosyvoice.yaml \ --prompt_data data/test-clean/parquet/data.list \ --prompt_utt2data data/test-clean/parquet/utt2data.list \ --tts_text `pwd`/tts_text.json \ --llm_model $pretrained_model_dir/llm.pt \ --flow_model $pretrained_model_dir/flow.pt \ --hifigan_model $pretrained_model_dir/hift.pt \ --result_dir `pwd`/exp/cosyvoice/test-clean/$mode done fi # train llm export CUDA_VISIBLE_DEVICES="0,1,2,3" num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') job_id=1986 dist_backend="nccl" num_workers=2 prefetch=100 train_engine=torch_ddp if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then echo "Run train. We only support llm traning for now. If your want to train from scratch, please use conf/cosyvoice.fromscratch.yaml" if [ $train_engine == 'deepspeed' ]; then echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary" fi cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list for model in llm; do torchrun --nnodes=1 --nproc_per_node=$num_gpus \ --rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \ cosyvoice/bin/train.py \ --train_engine $train_engine \ --config conf/cosyvoice.yaml \ --train_data data/train.data.list \ --cv_data data/dev.data.list \ --model $model \ --checkpoint $pretrained_model_dir/$model.pt \ --model_dir `pwd`/exp/cosyvoice/$model/$train_engine \ --tensorboard_dir `pwd`/tensorboard/cosyvoice/$model/$train_engine \ --ddp.dist_backend $dist_backend \ --num_workers ${num_workers} \ --prefetch ${prefetch} \ --pin_memory \ --deepspeed_config ./conf/ds_stage2.json \ --deepspeed.save_states model+optimizer done fi