# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import argparse import logging logging.getLogger('matplotlib').setLevel(logging.WARNING) from fastapi import FastAPI, UploadFile, Form, File from fastapi.responses import StreamingResponse from fastapi.middleware.cors import CORSMiddleware import uvicorn import numpy as np ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append('{}/../../..'.format(ROOT_DIR)) sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR)) from cosyvoice.cli.cosyvoice import CosyVoice from cosyvoice.utils.file_utils import load_wav app = FastAPI() # set cross region allowance app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"]) def generate_data(model_output): for i in model_output: tts_audio = (i['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes() yield tts_audio @app.get("/inference_sft") async def inference_sft(tts_text: str = Form(), spk_id: str = Form()): model_output = cosyvoice.inference_sft(tts_text, spk_id) return StreamingResponse(generate_data(model_output)) @app.get("/inference_zero_shot") async def inference_zero_shot(tts_text: str = Form(), prompt_text: str = Form(), prompt_wav: UploadFile = File()): prompt_speech_16k = load_wav(prompt_wav.file, 16000) model_output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k) return StreamingResponse(generate_data(model_output)) @app.get("/inference_cross_lingual") async def inference_cross_lingual(tts_text: str = Form(), prompt_wav: UploadFile = File()): prompt_speech_16k = load_wav(prompt_wav.file, 16000) model_output = cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k) return StreamingResponse(generate_data(model_output)) @app.get("/inference_instruct") async def inference_instruct(tts_text: str = Form(), spk_id: str = Form(), instruct_text: str = Form()): model_output = cosyvoice.inference_instruct(tts_text, spk_id, instruct_text) return StreamingResponse(generate_data(model_output)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--port', type=int, default=50000) parser.add_argument('--model_dir', type=str, default='iic/CosyVoice-300M', help='local path or modelscope repo id') args = parser.parse_args() cosyvoice = CosyVoice(args.model_dir) uvicorn.run(app, host="0.0.0.0", port=args.port)