# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time from hyperpyyaml import load_hyperpyyaml from modelscope import snapshot_download from cosyvoice.cli.frontend import CosyVoiceFrontEnd from cosyvoice.cli.model import CosyVoiceModel from cosyvoice.utils.file_utils import logging class CosyVoice: def __init__(self, model_dir): instruct = True if '-Instruct' in model_dir else False self.model_dir = model_dir if not os.path.exists(model_dir): model_dir = snapshot_download(model_dir) with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f: configs = load_hyperpyyaml(f) self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'], configs['feat_extractor'], '{}/campplus.onnx'.format(model_dir), '{}/speech_tokenizer_v1.onnx'.format(model_dir), '{}/spk2info.pt'.format(model_dir), instruct, configs['allowed_special']) self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift']) self.model.load('{}/llm.pt'.format(model_dir), '{}/flow.pt'.format(model_dir), '{}/hift.pt'.format(model_dir)) del configs def list_avaliable_spks(self): spks = list(self.frontend.spk2info.keys()) return spks def inference_sft(self, tts_text, spk_id, stream=False): for i in self.frontend.text_normalize(tts_text, split=True): model_input = self.frontend.frontend_sft(i, spk_id) start_time = time.time() logging.info('synthesis text {}'.format(i)) for model_output in self.model.inference(**model_input, stream=stream): speech_len = model_output['tts_speech'].shape[1] / 22050 logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) yield model_output start_time = time.time() def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False): prompt_text = self.frontend.text_normalize(prompt_text, split=False) for i in self.frontend.text_normalize(tts_text, split=True): model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k) start_time = time.time() logging.info('synthesis text {}'.format(i)) for model_output in self.model.inference(**model_input, stream=stream): speech_len = model_output['tts_speech'].shape[1] / 22050 logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) yield model_output start_time = time.time() def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False): if self.frontend.instruct is True: raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir)) for i in self.frontend.text_normalize(tts_text, split=True): model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k) start_time = time.time() logging.info('synthesis text {}'.format(i)) for model_output in self.model.inference(**model_input, stream=stream): speech_len = model_output['tts_speech'].shape[1] / 22050 logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) yield model_output start_time = time.time() def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False): if self.frontend.instruct is False: raise ValueError('{} do not support instruct inference'.format(self.model_dir)) instruct_text = self.frontend.text_normalize(instruct_text, split=False) for i in self.frontend.text_normalize(tts_text, split=True): model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text) start_time = time.time() logging.info('synthesis text {}'.format(i)) for model_output in self.model.inference(**model_input, stream=stream): speech_len = model_output['tts_speech'].shape[1] / 22050 logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) yield model_output start_time = time.time()