# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Tuple import torch.nn as nn import torch from torch.nn import functional as F from cosyvoice.utils.mask import make_pad_mask class InterpolateRegulator(nn.Module): def __init__( self, channels: int, sampling_ratios: Tuple, out_channels: int = None, groups: int = 1, ): super().__init__() self.sampling_ratios = sampling_ratios out_channels = out_channels or channels model = nn.ModuleList([]) if len(sampling_ratios) > 0: for _ in sampling_ratios: module = nn.Conv1d(channels, channels, 3, 1, 1) norm = nn.GroupNorm(groups, channels) act = nn.Mish() model.extend([module, norm, act]) model.append( nn.Conv1d(channels, out_channels, 1, 1) ) self.model = nn.Sequential(*model) def forward(self, x, ylens=None): # x in (B, T, D) mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1) x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='linear') out = self.model(x).transpose(1, 2).contiguous() olens = ylens return out * mask, olens def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50): # in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel # x in (B, T, D) if x2.shape[1] > 40: x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear') x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 - int(20 / input_frame_rate * 22050 / 256) * 2, mode='linear') x2_tail = F.interpolate(x2[:, -20:].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear') x2 = torch.concat([x2_head, x2_mid, x2_tail], dim=2) else: x2 = F.interpolate(x2.transpose(1, 2).contiguous(), size=mel_len2, mode='linear') if x1.shape[1] != 0: x1 = F.interpolate(x1.transpose(1, 2).contiguous(), size=mel_len1, mode='linear') x = torch.concat([x1, x2], dim=2) else: x = x2 out = self.model(x).transpose(1, 2).contiguous() return out, mel_len1 + mel_len2