Fix
Browse files
app.py
CHANGED
@@ -7,20 +7,12 @@ import torchaudio
|
|
7 |
from lang_id import identify_languages
|
8 |
from whisper import transcribe
|
9 |
|
10 |
-
# # Whisperモデルとプロセッサのロード
|
11 |
-
# model_name = "openai/whisper-tiny"
|
12 |
-
# processor = WhisperProcessor.from_pretrained(model_name)
|
13 |
-
# model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
14 |
-
# # デバイスの設定(GPUが利用可能な場合はGPUを使用)
|
15 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
-
# model.to(device)
|
17 |
-
|
18 |
# アプリケーションの状態を保持する変数
|
19 |
data = []
|
20 |
current_chunk = []
|
21 |
|
22 |
SAMPLING_RATE = 16000
|
23 |
-
CHUNK_DURATION = 5 # 5
|
24 |
|
25 |
|
26 |
def normalize_audio(audio):
|
@@ -38,12 +30,18 @@ def resample_audio(audio, orig_sr, target_sr=16000):
|
|
38 |
return audio
|
39 |
|
40 |
|
41 |
-
def process_audio(audio):
|
42 |
-
global data, current_chunk
|
43 |
print("Process_audio")
|
44 |
print(audio)
|
|
|
|
|
|
|
45 |
sr, audio_data = audio
|
46 |
|
|
|
|
|
|
|
47 |
print(audio_data.shape, audio_data.dtype)
|
48 |
# 一番最初にSampling rateを揃えておく
|
49 |
audio_data = resample_audio(audio_data, sr, target_sr=SAMPLING_RATE)
|
@@ -56,15 +54,15 @@ def process_audio(audio):
|
|
56 |
current_chunk.append(audio_data)
|
57 |
total_chunk = np.concatenate(current_chunk)
|
58 |
|
59 |
-
while len(total_chunk) >= SAMPLING_RATE *
|
60 |
-
chunk = total_chunk[:SAMPLING_RATE *
|
61 |
-
total_chunk = total_chunk[SAMPLING_RATE *
|
62 |
-
audio_sec +=
|
63 |
|
64 |
print(f"Processing audio chunk of length {len(chunk)}")
|
65 |
volume_norm = np.linalg.norm(chunk) / np.finfo(np.float32).max
|
66 |
length = len(chunk) / SAMPLING_RATE # 音声データの長さ(秒)
|
67 |
-
selected_scores, all_scores = identify_languages(chunk)
|
68 |
|
69 |
# 日本語と英語の確率値を取得
|
70 |
ja_prob = selected_scores['Japanese']
|
@@ -79,7 +77,6 @@ def process_audio(audio):
|
|
79 |
transcription = transcribe(chunk)
|
80 |
|
81 |
data.append({
|
82 |
-
# "Time": pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S'),
|
83 |
"Time": audio_sec,
|
84 |
"Length (s)": length,
|
85 |
"Volume": volume_norm,
|
@@ -95,14 +92,16 @@ def process_audio(audio):
|
|
95 |
current_chunk = [total_chunk]
|
96 |
|
97 |
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
100 |
outputs = [gr.Audio(type="numpy"), gr.DataFrame(headers=["Time", "Volume", "Length (s)"])]
|
101 |
|
102 |
with gr.Blocks() as demo:
|
103 |
with gr.TabItem("Upload"):
|
104 |
-
inputs_file = gr.Audio(sources=["upload"], type="numpy")
|
105 |
-
outputs = [gr.Audio(type="numpy"), gr.DataFrame(headers=["Time", "Volume", "Length (s)"])]
|
106 |
gr.Interface(
|
107 |
fn=process_audio,
|
108 |
inputs=inputs_file,
|
@@ -113,8 +112,6 @@ with gr.Blocks() as demo:
|
|
113 |
)
|
114 |
|
115 |
with gr.TabItem("Microphone"):
|
116 |
-
inputs_stream = gr.Audio(sources=["microphone"], type="numpy", streaming=True)
|
117 |
-
outputs = [gr.Audio(type="numpy"), gr.DataFrame(headers=["Time", "Volume", "Length (s)"])]
|
118 |
gr.Interface(
|
119 |
fn=process_audio,
|
120 |
inputs=inputs_stream,
|
@@ -124,6 +121,5 @@ with gr.Blocks() as demo:
|
|
124 |
description="Speak into the microphone and see real-time audio processing results."
|
125 |
)
|
126 |
|
127 |
-
|
128 |
if __name__ == "__main__":
|
129 |
demo.launch()
|
|
|
7 |
from lang_id import identify_languages
|
8 |
from whisper import transcribe
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# アプリケーションの状態を保持する変数
|
11 |
data = []
|
12 |
current_chunk = []
|
13 |
|
14 |
SAMPLING_RATE = 16000
|
15 |
+
CHUNK_DURATION = 5 # 初期値としての5秒
|
16 |
|
17 |
|
18 |
def normalize_audio(audio):
|
|
|
30 |
return audio
|
31 |
|
32 |
|
33 |
+
def process_audio(audio, chunk_duration, language_set):
|
34 |
+
global data, current_chunk, SAMPLING_RATE
|
35 |
print("Process_audio")
|
36 |
print(audio)
|
37 |
+
if audio is None:
|
38 |
+
return
|
39 |
+
|
40 |
sr, audio_data = audio
|
41 |
|
42 |
+
# language_set
|
43 |
+
language_set = [lang.strip() for lang in language_set.split(",")]
|
44 |
+
|
45 |
print(audio_data.shape, audio_data.dtype)
|
46 |
# 一番最初にSampling rateを揃えておく
|
47 |
audio_data = resample_audio(audio_data, sr, target_sr=SAMPLING_RATE)
|
|
|
54 |
current_chunk.append(audio_data)
|
55 |
total_chunk = np.concatenate(current_chunk)
|
56 |
|
57 |
+
while len(total_chunk) >= SAMPLING_RATE * chunk_duration:
|
58 |
+
chunk = total_chunk[:SAMPLING_RATE * chunk_duration]
|
59 |
+
total_chunk = total_chunk[SAMPLING_RATE * chunk_duration:] # 処理済みの部分を削除
|
60 |
+
audio_sec += chunk_duration
|
61 |
|
62 |
print(f"Processing audio chunk of length {len(chunk)}")
|
63 |
volume_norm = np.linalg.norm(chunk) / np.finfo(np.float32).max
|
64 |
length = len(chunk) / SAMPLING_RATE # 音声データの長さ(秒)
|
65 |
+
selected_scores, all_scores = identify_languages(chunk, language_set)
|
66 |
|
67 |
# 日本語と英語の確率値を取得
|
68 |
ja_prob = selected_scores['Japanese']
|
|
|
77 |
transcription = transcribe(chunk)
|
78 |
|
79 |
data.append({
|
|
|
80 |
"Time": audio_sec,
|
81 |
"Length (s)": length,
|
82 |
"Volume": volume_norm,
|
|
|
92 |
current_chunk = [total_chunk]
|
93 |
|
94 |
|
95 |
+
# パラメータの入力コンポーネント
|
96 |
+
chunk_duration_input = gr.Number(value=5, label="Chunk Duration (seconds)")
|
97 |
+
language_set_input = gr.Textbox(value="Japanese,English", label="Language Set (comma-separated)")
|
98 |
+
|
99 |
+
inputs_file = [gr.Audio(sources=["upload"], type="numpy"), chunk_duration_input, language_set_input]
|
100 |
+
inputs_stream = [gr.Audio(sources=["microphone"], type="numpy", streaming=True), chunk_duration_input, language_set_input]
|
101 |
outputs = [gr.Audio(type="numpy"), gr.DataFrame(headers=["Time", "Volume", "Length (s)"])]
|
102 |
|
103 |
with gr.Blocks() as demo:
|
104 |
with gr.TabItem("Upload"):
|
|
|
|
|
105 |
gr.Interface(
|
106 |
fn=process_audio,
|
107 |
inputs=inputs_file,
|
|
|
112 |
)
|
113 |
|
114 |
with gr.TabItem("Microphone"):
|
|
|
|
|
115 |
gr.Interface(
|
116 |
fn=process_audio,
|
117 |
inputs=inputs_stream,
|
|
|
121 |
description="Speak into the microphone and see real-time audio processing results."
|
122 |
)
|
123 |
|
|
|
124 |
if __name__ == "__main__":
|
125 |
demo.launch()
|