Spaces:
Running
Running
Jordan Legg
commited on
Commit
·
5b879f4
1
Parent(s):
510f4a2
working build
Browse files- .gitignore +22 -0
- app.py +62 -0
- requirements.txt +4 -0
- test.py +10 -0
.gitignore
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*.pyo
|
5 |
+
*.pyd
|
6 |
+
*.egg-info/
|
7 |
+
dist/
|
8 |
+
build/
|
9 |
+
*.whl
|
10 |
+
|
11 |
+
# Virtual Environment
|
12 |
+
venv/
|
13 |
+
env/
|
14 |
+
ENV/
|
15 |
+
.venv/
|
16 |
+
.env/
|
17 |
+
|
18 |
+
# Jupyter Notebook
|
19 |
+
.ipynb_checkpoints
|
20 |
+
|
21 |
+
# Gradio specific
|
22 |
+
gradio_cache/
|
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
import json
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
|
6 |
+
def get_tokenizer_names(model_name):
|
7 |
+
try:
|
8 |
+
# First attempt: Try to get names from model_index.json
|
9 |
+
model_info_path = hf_hub_download(model_name, filename="model_index.json")
|
10 |
+
with open(model_info_path, "r") as f:
|
11 |
+
model_info = json.load(f)
|
12 |
+
|
13 |
+
# Extract tokenizer class names from the JSON
|
14 |
+
tokenizer_1_class = model_info.get("tokenizer", ["", "Unknown"])[1]
|
15 |
+
tokenizer_2_class = model_info.get("tokenizer_2", ["", "Unknown"])[1]
|
16 |
+
|
17 |
+
return tokenizer_1_class, tokenizer_2_class
|
18 |
+
|
19 |
+
except Exception:
|
20 |
+
# Second attempt: Fall back to original method
|
21 |
+
try:
|
22 |
+
model_info = AutoTokenizer.from_pretrained(model_name, subfolder="tokenizer", _from_auto=True)
|
23 |
+
config = model_info.init_kwargs
|
24 |
+
return config.get('tokenizer_class', 'Unknown'), config.get('tokenizer_2_class', 'Unknown')
|
25 |
+
except Exception:
|
26 |
+
return "Unknown", "Unknown"
|
27 |
+
|
28 |
+
def count_tokens(model_name, text):
|
29 |
+
# Load the tokenizers from the specified model
|
30 |
+
tokenizer_1 = AutoTokenizer.from_pretrained(f"{model_name}", subfolder="tokenizer")
|
31 |
+
tokenizer_2 = AutoTokenizer.from_pretrained(f"{model_name}", subfolder="tokenizer_2")
|
32 |
+
|
33 |
+
# Get tokenizer names
|
34 |
+
tokenizer_1_name, tokenizer_2_name = get_tokenizer_names(model_name)
|
35 |
+
|
36 |
+
# Tokenize the input text
|
37 |
+
tokens_1 = tokenizer_1.tokenize(text)
|
38 |
+
tokens_2 = tokenizer_2.tokenize(text)
|
39 |
+
|
40 |
+
# Count the tokens
|
41 |
+
count_1 = len(tokens_1)
|
42 |
+
count_2 = len(tokens_2)
|
43 |
+
|
44 |
+
return f"{tokenizer_1_name}: {count_1} tokens", f"{tokenizer_2_name}: {count_2} tokens"
|
45 |
+
|
46 |
+
# Create a Gradio interface
|
47 |
+
iface = gr.Interface(
|
48 |
+
fn=count_tokens,
|
49 |
+
inputs=[
|
50 |
+
gr.Textbox(label="Model Name", placeholder="e.g., black-forest-labs/FLUX.1-dev"),
|
51 |
+
gr.Textbox(label="Text", placeholder="Enter text here...")
|
52 |
+
],
|
53 |
+
outputs=[
|
54 |
+
gr.Textbox(label="Tokenizer 1"),
|
55 |
+
gr.Textbox(label="Tokenizer 2")
|
56 |
+
],
|
57 |
+
title="Token Counter",
|
58 |
+
description="Enter a Hugging Face model name and text to count tokens using the model's tokenizers."
|
59 |
+
)
|
60 |
+
|
61 |
+
# Launch the app
|
62 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
protobuf
|
4 |
+
sentencepiece
|
test.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import hf_hub_download
|
2 |
+
|
3 |
+
# Replace "model_name" with the actual model name
|
4 |
+
model_info_path = hf_hub_download("shuttleai/shuttle-3-diffusion", filename="model_index.json")
|
5 |
+
|
6 |
+
# Now you can read the contents of the file
|
7 |
+
with open(model_info_path, "r") as f:
|
8 |
+
model_info_content = f.read()
|
9 |
+
|
10 |
+
print(model_info_content)
|