import os import requests import streamlit as st from io import BytesIO from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from transformers import pipeline, AutoModel, AutoTokenizer import torch # Load the summarization pipeline model @st.cache_resource def load_summarization_pipeline(): summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # Use a summarization model return summarizer summarizer = load_summarization_pipeline() # List of Hugging Face PDF URLs PDF_URLS = [ "https://huggingface.co/spaces/tahirsher/GenAI_Lawyers_Guide/blob/main/administrator92ada0936848e501425591b4ad0cd417.pdf", "https://huggingface.co/spaces/tahirsher/GenAI_Lawyers_Guide/blob/main/Pakistan%20Penal%20Code.pdf", ] # Helper function to convert Hugging Face blob URLs to direct download URLs def get_huggingface_raw_url(url): if "huggingface.co" in url and "/blob/" in url: return url.replace("/blob/", "/resolve/") return url # Fetch and extract text from PDF files hosted on Hugging Face def fetch_pdf_text_from_huggingface(urls): text = "" for url in urls: raw_url = get_huggingface_raw_url(url) response = requests.get(raw_url) if response.status_code == 200: pdf_file = BytesIO(response.content) try: pdf_reader = PdfReader(pdf_file) for page in pdf_reader.pages: page_text = page.extract_text() if page_text: text += page_text except Exception as e: st.error(f"Failed to read PDF from URL {url}: {e}") else: st.error(f"Failed to fetch PDF from URL: {url}") return text # Split text into manageable chunks @st.cache_data def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) chunks = text_splitter.split_text(text) return chunks # Initialize embedding function embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") # Create a FAISS vector store with embeddings @st.cache_resource def load_or_create_vector_store(text_chunks): vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function) return vector_store # Generate summary based on the retrieved text def generate_summary_with_huggingface(query, retrieved_text): summarization_input = f"{query}\n\nRelated information:\n{retrieved_text}" summary = summarizer(summarization_input, max_length=200, min_length=50, do_sample=False) return summary[0]["summary_text"] # Generate response for user query def user_input(user_question, vector_store): docs = vector_store.similarity_search(user_question) context_text = " ".join([doc.page_content for doc in docs]) return generate_summary_with_huggingface(user_question, context_text) # Main function to run the Streamlit app def main(): st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="📄") st.title("📄 Gen AI Lawyers Guide") # Load documents from Hugging Face raw_text = fetch_pdf_text_from_huggingface(PDF_URLS) text_chunks = get_text_chunks(raw_text) vector_store = load_or_create_vector_store(text_chunks) # User question input user_question = st.text_input("Ask a Question:", placeholder="Type your question here...") if st.button("Get Response"): if not user_question: st.warning("Please enter a question before submitting.") else: with st.spinner("Generating response..."): answer = user_input(user_question, vector_store) st.markdown(f"**🤖 AI:** {answer}") if __name__ == "__main__": main()