File size: 11,982 Bytes
04e8185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a55e212
7f8f3ca
a55e212
 
04e8185
 
 
 
 
 
 
7f8f3ca
 
 
04e8185
 
7f8f3ca
04e8185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fe488b
04e8185
 
 
 
 
 
 
 
 
 
 
 
 
3fe488b
04e8185
 
 
 
 
 
3fe488b
 
 
 
 
04e8185
 
3fe488b
04e8185
 
 
3fe488b
04e8185
 
 
 
 
 
 
 
3fe488b
04e8185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fe488b
04e8185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fe488b
04e8185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fe488b
 
04e8185
 
 
 
 
 
 
 
 
 
 
 
 
 
3fe488b
 
 
 
04e8185
3fe488b
04e8185
3fe488b
 
 
04e8185
 
 
 
 
 
3fe488b
04e8185
 
 
 
3fe488b
 
 
04e8185
 
 
 
 
 
3fe488b
04e8185
 
 
3fe488b
04e8185
 
 
3fe488b
04e8185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import gradio as gr
import base64
import json
import os
import shutil
import uuid
import glob
from huggingface_hub import CommitScheduler, HfApi, snapshot_download
from pathlib import Path
import git
from datasets import Dataset, Features, Value, Sequence, Image as ImageFeature
import threading
import time
from utils import process_and_push_dataset
from datasets import load_dataset

api = HfApi(token=os.environ["HF_TOKEN"])

VALID_DATASET = load_dataset("taesiri/IERv2-Subset", split="train")

VALID_DATASET_POST_IDS = (
    load_dataset("taesiri/IERv2-Subset", split="train", columns=["post_id"])
    .to_pandas()["post_id"]
    .tolist()
)

POST_ID_TO_ID_MAP = {post_id: idx for idx, post_id in enumerate(VALID_DATASET_POST_IDS)}

DATASET_REPO = "taesiri/AIImageEditingResults_Intemediate"
FINAL_DATASET_REPO = "taesiri/AIImageEditingResults"


# Download existing data from hub
def sync_with_hub():
    """
    Synchronize local data with the hub by cloning the dataset repo
    """
    print("Starting sync with hub...")
    data_dir = Path("./data")
    if data_dir.exists():
        # Backup existing data
        backup_dir = Path("./data_backup")
        if backup_dir.exists():
            shutil.rmtree(backup_dir)
        shutil.copytree(data_dir, backup_dir)

    # Clone/pull latest data from hub
    # Use token in the URL for authentication following HF's new format
    token = os.environ["HF_TOKEN"]
    username = "taesiri"  # Extract from DATASET_REPO
    repo_url = f"https://{username}:{token}@huggingface.co/datasets/{DATASET_REPO}"
    hub_data_dir = Path("hub_data")

    if hub_data_dir.exists():
        # If repo exists, do a git pull
        print("Pulling latest changes...")
        repo = git.Repo(hub_data_dir)
        origin = repo.remotes.origin
        # Set the new URL with token
        if "https://" in origin.url:
            origin.set_url(repo_url)
        origin.pull()
    else:
        # Clone the repo with token
        print("Cloning repository...")
        git.Repo.clone_from(repo_url, hub_data_dir)

    # Merge hub data with local data
    hub_data_source = hub_data_dir / "data"
    if hub_data_source.exists():
        # Create data dir if it doesn't exist
        data_dir.mkdir(exist_ok=True)

        # Copy files from hub
        for item in hub_data_source.glob("*"):
            if item.is_dir():
                dest = data_dir / item.name
                if not dest.exists():  # Only copy if doesn't exist locally
                    shutil.copytree(item, dest)

    # Clean up cloned repo
    if hub_data_dir.exists():
        shutil.rmtree(hub_data_dir)
    print("Finished syncing with hub!")


scheduler = CommitScheduler(
    repo_id=DATASET_REPO,
    repo_type="dataset",
    folder_path="./data",
    path_in_repo="data",
    every=1,
)


def load_question_data(question_id):
    """
    Load a specific question's data
    Returns a tuple of all form fields
    """
    if not question_id:
        return [None] * 11  # Reduced number of fields

    # Extract the ID part before the colon from the dropdown selection
    question_id = (
        question_id.split(":")[0].strip() if ":" in question_id else question_id
    )

    json_path = os.path.join("./data", question_id, "question.json")
    if not os.path.exists(json_path):
        print(f"Question file not found: {json_path}")
        return [None] * 11

    try:
        with open(json_path, "r", encoding="utf-8") as f:
            data = json.loads(f.read().strip())

        # Load images
        def load_image(image_path):
            if not image_path:
                return None
            full_path = os.path.join(
                "./data", question_id, os.path.basename(image_path)
            )
            return full_path if os.path.exists(full_path) else None

        question_images = data.get("question_images", [])
        rationale_images = data.get("rationale_images", [])

        return [
            (
                ",".join(data["question_categories"])
                if isinstance(data["question_categories"], list)
                else data["question_categories"]
            ),
            data["question"],
            data["final_answer"],
            data.get("rationale_text", ""),
            load_image(question_images[0] if question_images else None),
            load_image(question_images[1] if len(question_images) > 1 else None),
            load_image(question_images[2] if len(question_images) > 2 else None),
            load_image(question_images[3] if len(question_images) > 3 else None),
            load_image(rationale_images[0] if rationale_images else None),
            load_image(rationale_images[1] if len(rationale_images) > 1 else None),
            question_id,
        ]
    except Exception as e:
        print(f"Error loading question {question_id}: {str(e)}")
        return [None] * 11


def load_post_image(post_id):
    if not post_id:
        return [None] * 31  # source image + 10 triplets of (image, text, notes)

    idx = POST_ID_TO_ID_MAP[post_id]
    source_image = VALID_DATASET[idx]["image"]

    # Load existing responses if any
    post_folder = os.path.join("./data", str(post_id))
    metadata_path = os.path.join(post_folder, "metadata.json")

    if os.path.exists(metadata_path):
        with open(metadata_path, "r") as f:
            metadata = json.load(f)

        # Initialize response data
        responses = [(None, "", "")] * 10  # Initialize with empty notes

        # Fill in existing responses
        for response in metadata["responses"]:
            idx = response["response_id"]
            if idx < 10:  # Ensure we don't exceed our UI limit
                image_path = os.path.join(post_folder, response["image_path"])
                responses[idx] = (
                    image_path,
                    response["answer_text"],
                    response.get("notes", ""),  # Get notes with empty string as default
                )

        # Flatten responses for output
        flat_responses = [item for triplet in responses for item in triplet]
        return [source_image] + flat_responses

    # If no existing responses, return source image and empty responses
    return [source_image] + [None] * 30


def generate_json_files(source_image, responses, post_id):
    """
    Save the source image and multiple responses to the data directory

    Args:
        source_image: Path to the source image
        responses: List of (image, answer, notes) tuples
        post_id: The post ID from the dataset
    """
    # Create parent data folder if it doesn't exist
    parent_data_folder = "./data"
    os.makedirs(parent_data_folder, exist_ok=True)

    # Create/clear post_id folder
    post_folder = os.path.join(parent_data_folder, str(post_id))
    if os.path.exists(post_folder):
        shutil.rmtree(post_folder)
    os.makedirs(post_folder)

    # Save source image
    source_image_path = os.path.join(post_folder, "source_image.png")
    if isinstance(source_image, str):
        shutil.copy2(source_image, source_image_path)
    else:
        gr.processing_utils.save_image(source_image, source_image_path)

    # Create responses data
    responses_data = []
    for idx, (response_image, answer_text, notes) in enumerate(responses):
        if response_image and answer_text:  # Only process if both image and text exist
            response_folder = os.path.join(post_folder, f"response_{idx}")
            os.makedirs(response_folder)

            # Save response image
            response_image_path = os.path.join(response_folder, "response_image.png")
            if isinstance(response_image, str):
                shutil.copy2(response_image, response_image_path)
            else:
                gr.processing_utils.save_image(response_image, response_image_path)

            # Add to responses data
            responses_data.append(
                {
                    "response_id": idx,
                    "answer_text": answer_text,
                    "notes": notes,
                    "image_path": f"response_{idx}/response_image.png",
                }
            )

    # Create metadata JSON
    metadata = {
        "post_id": post_id,
        "source_image": "source_image.png",
        "responses": responses_data,
    }

    # Save metadata
    with open(os.path.join(post_folder, "metadata.json"), "w", encoding="utf-8") as f:
        json.dump(metadata, f, ensure_ascii=False, indent=2)

    return post_folder


# Build the Gradio app
with gr.Blocks() as demo:
    gr.Markdown("# Image Response Collector")

    # Source image selection at the top
    with gr.Column():
        post_id_dropdown = gr.Dropdown(
            label="Select Post ID to Load Image",
            choices=VALID_DATASET_POST_IDS,
            type="value",
            allow_custom_value=False,
        )
        source_image = gr.Image(label="Source Image", type="filepath")

    # Responses in tabs
    with gr.Tabs() as response_tabs:
        responses = []
        for i in range(10):
            with gr.Tab(f"Response {i+1}"):
                img = gr.Image(label=f"Response Image {i+1}", type="filepath")
                txt = gr.Textbox(label=f"Model Name {i+1}", lines=2)
                notes = gr.Textbox(label=f"Miscellaneous Notes {i+1}", lines=3)
                responses.append((img, txt, notes))

    with gr.Row():
        submit_btn = gr.Button("Submit All Responses")
        clear_btn = gr.Button("Clear Form")

    def submit_responses(source_img, post_id, *response_data):
        if not source_img:
            gr.Warning("Please select a source image first!")
            return

        if not post_id:
            gr.Warning("Please select a post ID first!")
            return

        # Convert flat response_data into triplets of (image, text, notes)
        response_triplets = list(
            zip(response_data[::3], response_data[1::3], response_data[2::3])
        )

        # Filter out empty responses (only checking image and model name, notes are optional)
        valid_responses = [
            (img, txt, notes)
            for img, txt, notes in response_triplets
            if img is not None and txt
        ]

        if not valid_responses:
            gr.Warning("Please provide at least one response (image + text)!")
            return

        # Modify generate_json_files call to handle notes
        generate_json_files(source_img, valid_responses, post_id)
        gr.Info("Responses saved successfully! 🎉")

    def clear_form():
        outputs = [None] * (
            1 + 30
        )  # 1 source image + 10 triplets of (image, text, notes)
        return outputs

    # Connect components
    post_id_dropdown.change(
        fn=load_post_image,
        inputs=[post_id_dropdown],
        outputs=[source_image] + [comp for triplet in responses for comp in triplet],
    )

    submit_inputs = [source_image, post_id_dropdown] + [
        comp for triplet in responses for comp in triplet
    ]
    submit_btn.click(fn=submit_responses, inputs=submit_inputs)

    clear_outputs = [source_image] + [comp for triplet in responses for comp in triplet]
    clear_btn.click(fn=clear_form, outputs=clear_outputs)


def process_thread():
    while True:
        try:
            pass
            # process_and_push_dataset(
            #     "./data",
            #     FINAL_DATASET_REPO,
            #     token=os.environ["HF_TOKEN"],
            #     private=True,
            # )
        except Exception as e:
            print(f"Error in process thread: {e}")
        time.sleep(120)  # Sleep for 2 minutes


if __name__ == "__main__":
    print("Initializing app...")
    sync_with_hub()  # Sync before launching the app
    print("Starting Gradio interface...")

    # Start the processing thread when the app starts
    processing_thread = threading.Thread(target=process_thread, daemon=True)
    processing_thread.start()

    demo.launch()