t2ag3 commited on
Commit
7af81fb
·
verified ·
1 Parent(s): ad4650d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -47
app.py CHANGED
@@ -7,58 +7,51 @@ For more information on `huggingface_hub` Inference API support, please check th
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
42
 
43
  """
44
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
  """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
 
10
+ def fetch_response(user_input):
11
+ chat = ChatGroq(
12
+ api_key = groq_api_key,
13
+ model_name = model_name
14
+ )
15
+ system_prompt = (
16
+ "あなたは便利なアシスタントです。"
17
+ "マニュアルの内容から回答してください。"
18
+ "\n\n"
19
+ "{context}"
20
+ )
21
+
22
+ prompt = ChatPromptTemplate.from_messages(
23
+ [
24
+ ("system", system_prompt),
25
+ ("human", "{input}"),
26
+ ]
27
+ )
28
+ # ドキュメントのリストを渡せるchainを作成
29
+ question_answer_chain = create_stuff_documents_chain(groq_chat, prompt)
30
+ # RetrieverとQAチェーンを組み合わせてRAGチェーンを作成
31
+ rag_chain = create_retrieval_chain(retriever, question_answer_chain)
32
+
33
+ response = rag_chain.invoke({"input": user_input})
34
+ return [response["answer"], response["context"][0], response["context"][1]]
 
 
 
 
 
 
35
 
36
 
37
  """
38
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
39
  """
40
+ with gr.Blocks() as demo:
41
+ gr.Markdown('''# SOP事業マスター \n
42
+ SOP作成研究に関して、公募要領やQAを参考にRAGを使って回答します。
43
+ ''')
44
+ with gr.Row():
45
+ with gr.Column():
46
+ user_input = gr.Textbox(label="User Input")
47
+ submit = gr.Button("Submit")
48
+ answer = gr.Textbox(label="Answer")
49
+ with gr.Row():
50
+ with gr.Column():
51
+ source1 = gr.Textbox(label="回答ソース1")
52
+ with gr.Column():
53
+ source2 = gr.Textbox(label="回答ソース2")
54
+ submit.click(fetch_response, inputs=user_input, outputs=[answer, source1, source2])
 
55
 
56
  if __name__ == "__main__":
57
  demo.launch()