import torch import torch.nn as nn import numpy as np from torch.nn.functional import silu from einops import rearrange from utils.general_utils import quaternion_raw_multiply from utils.graphics_utils import fov2focal # U-Net implementation from EDM # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # This work is licensed under a Creative Commons # Attribution-NonCommercial-ShareAlike 4.0 International License. # You should have received a copy of the license along with this # work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/ """Model architectures and preconditioning schemes used in the paper "Elucidating the Design Space of Diffusion-Based Generative Models".""" #---------------------------------------------------------------------------- # Unified routine for initializing weights and biases. def weight_init(shape, mode, fan_in, fan_out): if mode == 'xavier_uniform': return np.sqrt(6 / (fan_in + fan_out)) * (torch.rand(*shape) * 2 - 1) if mode == 'xavier_normal': return np.sqrt(2 / (fan_in + fan_out)) * torch.randn(*shape) if mode == 'kaiming_uniform': return np.sqrt(3 / fan_in) * (torch.rand(*shape) * 2 - 1) if mode == 'kaiming_normal': return np.sqrt(1 / fan_in) * torch.randn(*shape) raise ValueError(f'Invalid init mode "{mode}"') #---------------------------------------------------------------------------- # Fully-connected layer. class Linear(torch.nn.Module): def __init__(self, in_features, out_features, bias=True, init_mode='kaiming_normal', init_weight=1, init_bias=0): super().__init__() self.in_features = in_features self.out_features = out_features init_kwargs = dict(mode=init_mode, fan_in=in_features, fan_out=out_features) self.weight = torch.nn.Parameter(weight_init([out_features, in_features], **init_kwargs) * init_weight) self.bias = torch.nn.Parameter(weight_init([out_features], **init_kwargs) * init_bias) if bias else None def forward(self, x): x = x @ self.weight.to(x.dtype).t() if self.bias is not None: x = x.add_(self.bias.to(x.dtype)) return x #---------------------------------------------------------------------------- # Convolutional layer with optional up/downsampling. class Conv2d(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel, bias=True, up=False, down=False, resample_filter=[1,1], fused_resample=False, init_mode='kaiming_normal', init_weight=1, init_bias=0, ): assert not (up and down) super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.up = up self.down = down self.fused_resample = fused_resample init_kwargs = dict(mode=init_mode, fan_in=in_channels*kernel*kernel, fan_out=out_channels*kernel*kernel) self.weight = torch.nn.Parameter(weight_init([out_channels, in_channels, kernel, kernel], **init_kwargs) * init_weight) if kernel else None self.bias = torch.nn.Parameter(weight_init([out_channels], **init_kwargs) * init_bias) if kernel and bias else None f = torch.as_tensor(resample_filter, dtype=torch.float32) f = f.ger(f).unsqueeze(0).unsqueeze(1) / f.sum().square() self.register_buffer('resample_filter', f if up or down else None) def forward(self, x, N_views_xa=1): w = self.weight.to(x.dtype) if self.weight is not None else None b = self.bias.to(x.dtype) if self.bias is not None else None f = self.resample_filter.to(x.dtype) if self.resample_filter is not None else None w_pad = w.shape[-1] // 2 if w is not None else 0 f_pad = (f.shape[-1] - 1) // 2 if f is not None else 0 if self.fused_resample and self.up and w is not None: x = torch.nn.functional.conv_transpose2d(x, f.mul(4).tile([self.in_channels, 1, 1, 1]), groups=self.in_channels, stride=2, padding=max(f_pad - w_pad, 0)) x = torch.nn.functional.conv2d(x, w, padding=max(w_pad - f_pad, 0)) elif self.fused_resample and self.down and w is not None: x = torch.nn.functional.conv2d(x, w, padding=w_pad+f_pad) x = torch.nn.functional.conv2d(x, f.tile([self.out_channels, 1, 1, 1]), groups=self.out_channels, stride=2) else: if self.up: x = torch.nn.functional.conv_transpose2d(x, f.mul(4).tile([self.in_channels, 1, 1, 1]), groups=self.in_channels, stride=2, padding=f_pad) if self.down: x = torch.nn.functional.conv2d(x, f.tile([self.in_channels, 1, 1, 1]), groups=self.in_channels, stride=2, padding=f_pad) if w is not None: x = torch.nn.functional.conv2d(x, w, padding=w_pad) if b is not None: x = x.add_(b.reshape(1, -1, 1, 1)) return x #---------------------------------------------------------------------------- # Group normalization. class GroupNorm(torch.nn.Module): def __init__(self, num_channels, num_groups=32, min_channels_per_group=4, eps=1e-5): super().__init__() self.num_groups = min(num_groups, num_channels // min_channels_per_group) self.eps = eps self.weight = torch.nn.Parameter(torch.ones(num_channels)) self.bias = torch.nn.Parameter(torch.zeros(num_channels)) def forward(self, x, N_views_xa=1): x = torch.nn.functional.group_norm(x, num_groups=self.num_groups, weight=self.weight.to(x.dtype), bias=self.bias.to(x.dtype), eps=self.eps) return x.to(memory_format=torch.channels_last) #---------------------------------------------------------------------------- # Attention weight computation, i.e., softmax(Q^T * K). # Performs all computation using FP32, but uses the original datatype for # inputs/outputs/gradients to conserve memory. class AttentionOp(torch.autograd.Function): @staticmethod def forward(ctx, q, k): w = torch.einsum('ncq,nck->nqk', q.to(torch.float32), (k / np.sqrt(k.shape[1])).to(torch.float32)).softmax(dim=2).to(q.dtype) ctx.save_for_backward(q, k, w) return w @staticmethod def backward(ctx, dw): q, k, w = ctx.saved_tensors db = torch._softmax_backward_data(grad_output=dw.to(torch.float32), output=w.to(torch.float32), dim=2, input_dtype=torch.float32) dq = torch.einsum('nck,nqk->ncq', k.to(torch.float32), db).to(q.dtype) / np.sqrt(k.shape[1]) dk = torch.einsum('ncq,nqk->nck', q.to(torch.float32), db).to(k.dtype) / np.sqrt(k.shape[1]) return dq, dk #---------------------------------------------------------------------------- # Timestep embedding used in the DDPM++ and ADM architectures. class PositionalEmbedding(torch.nn.Module): def __init__(self, num_channels, max_positions=10000, endpoint=False): super().__init__() self.num_channels = num_channels self.max_positions = max_positions self.endpoint = endpoint def forward(self, x): b, c = x.shape x = rearrange(x, 'b c -> (b c)') freqs = torch.arange(start=0, end=self.num_channels//2, dtype=torch.float32, device=x.device) freqs = freqs / (self.num_channels // 2 - (1 if self.endpoint else 0)) freqs = (1 / self.max_positions) ** freqs x = x.ger(freqs.to(x.dtype)) x = torch.cat([x.cos(), x.sin()], dim=1) x = rearrange(x, '(b c) emb_ch -> b (c emb_ch)', b=b) return x #---------------------------------------------------------------------------- # Timestep embedding used in the NCSN++ architecture. class FourierEmbedding(torch.nn.Module): def __init__(self, num_channels, scale=16): super().__init__() self.register_buffer('freqs', torch.randn(num_channels // 2) * scale) def forward(self, x): b, c = x.shape x = rearrange(x, 'b c -> (b c)') x = x.ger((2 * np.pi * self.freqs).to(x.dtype)) x = torch.cat([x.cos(), x.sin()], dim=1) x = rearrange(x, '(b c) emb_ch -> b (c emb_ch)', b=b) return x class CrossAttentionBlock(torch.nn.Module): def __init__(self, num_channels, num_heads = 1, eps=1e-5): super().__init__() self.num_heads = 1 init_attn = dict(init_mode='xavier_uniform', init_weight=np.sqrt(0.2)) init_zero = dict(init_mode='xavier_uniform', init_weight=1e-5) self.norm = GroupNorm(num_channels=num_channels, eps=eps) self.q_proj = Conv2d(in_channels=num_channels, out_channels=num_channels, kernel=1, **init_attn) self.kv_proj = Conv2d(in_channels=num_channels, out_channels=num_channels*2, kernel=1, **init_attn) self.out_proj = Conv2d(in_channels=num_channels, out_channels=num_channels, kernel=3, **init_zero) def forward(self, q, kv): q_proj = self.q_proj(self.norm(q)).reshape(q.shape[0] * self.num_heads, q.shape[1] // self.num_heads, -1) k_proj, v_proj = self.kv_proj(self.norm(kv)).reshape(kv.shape[0] * self.num_heads, kv.shape[1] // self.num_heads, 2, -1).unbind(2) w = AttentionOp.apply(q_proj, k_proj) a = torch.einsum('nqk,nck->ncq', w, v_proj) x = self.out_proj(a.reshape(*q.shape)).add_(q) return x #---------------------------------------------------------------------------- # Unified U-Net block with optional up/downsampling and self-attention. # Represents the union of all features employed by the DDPM++, NCSN++, and # ADM architectures. class UNetBlock(torch.nn.Module): def __init__(self, in_channels, out_channels, emb_channels, up=False, down=False, attention=False, num_heads=None, channels_per_head=64, dropout=0, skip_scale=1, eps=1e-5, resample_filter=[1,1], resample_proj=False, adaptive_scale=True, init=dict(), init_zero=dict(init_weight=0), init_attn=None, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels if emb_channels is not None: self.affine = Linear(in_features=emb_channels, out_features=out_channels*(2 if adaptive_scale else 1), **init) self.num_heads = 0 if not attention else num_heads if num_heads is not None else out_channels // channels_per_head self.dropout = dropout self.skip_scale = skip_scale self.adaptive_scale = adaptive_scale self.norm0 = GroupNorm(num_channels=in_channels, eps=eps) self.conv0 = Conv2d(in_channels=in_channels, out_channels=out_channels, kernel=3, up=up, down=down, resample_filter=resample_filter, **init) self.norm1 = GroupNorm(num_channels=out_channels, eps=eps) self.conv1 = Conv2d(in_channels=out_channels, out_channels=out_channels, kernel=3, **init_zero) self.skip = None if out_channels != in_channels or up or down: kernel = 1 if resample_proj or out_channels!= in_channels else 0 self.skip = Conv2d(in_channels=in_channels, out_channels=out_channels, kernel=kernel, up=up, down=down, resample_filter=resample_filter, **init) if self.num_heads: self.norm2 = GroupNorm(num_channels=out_channels, eps=eps) self.qkv = Conv2d(in_channels=out_channels, out_channels=out_channels*3, kernel=1, **(init_attn if init_attn is not None else init)) self.proj = Conv2d(in_channels=out_channels, out_channels=out_channels, kernel=1, **init_zero) def forward(self, x, emb=None, N_views_xa=1): orig = x x = self.conv0(silu(self.norm0(x))) if emb is not None: params = self.affine(emb).unsqueeze(2).unsqueeze(3).to(x.dtype) if self.adaptive_scale: scale, shift = params.chunk(chunks=2, dim=1) x = silu(torch.addcmul(shift, self.norm1(x), scale + 1)) else: x = silu(self.norm1(x.add_(params))) x = silu(self.norm1(x)) x = self.conv1(torch.nn.functional.dropout(x, p=self.dropout, training=self.training)) x = x.add_(self.skip(orig) if self.skip is not None else orig) x = x * self.skip_scale if self.num_heads: if N_views_xa != 1: B, C, H, W = x.shape # (B, C, H, W) -> (B/N, N, C, H, W) -> (B/N, N, H, W, C) x = x.reshape(B // N_views_xa, N_views_xa, *x.shape[1:]).permute(0, 1, 3, 4, 2) # (B/N, N, H, W, C) -> (B/N, N*H, W, C) -> (B/N, C, N*H, W) x = x.reshape(B // N_views_xa, N_views_xa * x.shape[2], *x.shape[3:]).permute(0, 3, 1, 2) q, k, v = self.qkv(self.norm2(x)).reshape(x.shape[0] * self.num_heads, x.shape[1] // self.num_heads, 3, -1).unbind(2) w = AttentionOp.apply(q, k) a = torch.einsum('nqk,nck->ncq', w, v) x = self.proj(a.reshape(*x.shape)).add_(x) x = x * self.skip_scale if N_views_xa != 1: # (B/N, C, N*H, W) -> (B/N, N*H, W, C) x = x.permute(0, 2, 3, 1) # (B/N, N*H, W, C) -> (B/N, N, H, W, C) -> (B/N, N, C, H, W) x = x.reshape(B // N_views_xa, N_views_xa, H, W, C).permute(0, 1, 4, 2, 3) # (B/N, N, C, H, W) -> # (B, C, H, W) x = x.reshape(B, C, H, W) return x #---------------------------------------------------------------------------- # Reimplementation of the DDPM++ and NCSN++ architectures from the paper # "Score-Based Generative Modeling through Stochastic Differential # Equations". Equivalent to the original implementation by Song et al., # available at https://github.com/yang-song/score_sde_pytorch # taken from EDM repository https://github.com/NVlabs/edm/blob/main/training/networks.py#L372 class SongUNet(nn.Module): def __init__(self, img_resolution, # Image resolution at input/output. in_channels, # Number of color channels at input. out_channels, # Number of color channels at output. emb_dim_in = 0, # Input embedding dim. augment_dim = 0, # Augmentation label dimensionality, 0 = no augmentation. model_channels = 128, # Base multiplier for the number of channels. channel_mult = [1,2,2,2], # Per-resolution multipliers for the number of channels. channel_mult_emb = 4, # Multiplier for the dimensionality of the embedding vector. num_blocks = 4, # Number of residual blocks per resolution. attn_resolutions = [16], # List of resolutions with self-attention. dropout = 0.10, # Dropout probability of intermediate activations. label_dropout = 0, # Dropout probability of class labels for classifier-free guidance. embedding_type = 'positional', # Timestep embedding type: 'positional' for DDPM++, 'fourier' for NCSN++. channel_mult_noise = 0, # Timestep embedding size: 1 for DDPM++, 2 for NCSN++. encoder_type = 'standard', # Encoder architecture: 'standard' for DDPM++, 'residual' for NCSN++. decoder_type = 'standard', # Decoder architecture: 'standard' for both DDPM++ and NCSN++. resample_filter = [1,1], # Resampling filter: [1,1] for DDPM++, [1,3,3,1] for NCSN++. ): assert embedding_type in ['fourier', 'positional'] assert encoder_type in ['standard', 'skip', 'residual'] assert decoder_type in ['standard', 'skip'] super().__init__() self.label_dropout = label_dropout self.emb_dim_in = emb_dim_in if emb_dim_in > 0: emb_channels = model_channels * channel_mult_emb else: emb_channels = None noise_channels = model_channels * channel_mult_noise init = dict(init_mode='xavier_uniform') init_zero = dict(init_mode='xavier_uniform', init_weight=1e-5) init_attn = dict(init_mode='xavier_uniform', init_weight=np.sqrt(0.2)) block_kwargs = dict( emb_channels=emb_channels, num_heads=1, dropout=dropout, skip_scale=np.sqrt(0.5), eps=1e-6, resample_filter=resample_filter, resample_proj=True, adaptive_scale=False, init=init, init_zero=init_zero, init_attn=init_attn, ) # Mapping. # self.map_label = Linear(in_features=label_dim, out_features=noise_channels, **init) if label_dim else None # self.map_augment = Linear(in_features=augment_dim, out_features=noise_channels, bias=False, **init) if augment_dim else None # self.map_layer0 = Linear(in_features=noise_channels, out_features=emb_channels, **init) # self.map_layer1 = Linear(in_features=emb_channels, out_features=emb_channels, **init) if emb_dim_in > 0: self.map_layer0 = Linear(in_features=emb_dim_in, out_features=emb_channels, **init) self.map_layer1 = Linear(in_features=emb_channels, out_features=emb_channels, **init) if noise_channels > 0: self.noise_map_layer0 = Linear(in_features=noise_channels, out_features=emb_channels, **init) self.noise_map_layer1 = Linear(in_features=emb_channels, out_features=emb_channels, **init) # Encoder. self.enc = torch.nn.ModuleDict() cout = in_channels caux = in_channels for level, mult in enumerate(channel_mult): res = img_resolution >> level if level == 0: cin = cout cout = model_channels self.enc[f'{res}x{res}_conv'] = Conv2d(in_channels=cin, out_channels=cout, kernel=3, **init) else: self.enc[f'{res}x{res}_down'] = UNetBlock(in_channels=cout, out_channels=cout, down=True, **block_kwargs) if encoder_type == 'skip': self.enc[f'{res}x{res}_aux_down'] = Conv2d(in_channels=caux, out_channels=caux, kernel=0, down=True, resample_filter=resample_filter) self.enc[f'{res}x{res}_aux_skip'] = Conv2d(in_channels=caux, out_channels=cout, kernel=1, **init) if encoder_type == 'residual': self.enc[f'{res}x{res}_aux_residual'] = Conv2d(in_channels=caux, out_channels=cout, kernel=3, down=True, resample_filter=resample_filter, fused_resample=True, **init) caux = cout for idx in range(num_blocks): cin = cout cout = model_channels * mult attn = (res in attn_resolutions) self.enc[f'{res}x{res}_block{idx}'] = UNetBlock(in_channels=cin, out_channels=cout, attention=attn, **block_kwargs) skips = [block.out_channels for name, block in self.enc.items() if 'aux' not in name] # Decoder. self.dec = torch.nn.ModuleDict() for level, mult in reversed(list(enumerate(channel_mult))): res = img_resolution >> level if level == len(channel_mult) - 1: self.dec[f'{res}x{res}_in0'] = UNetBlock(in_channels=cout, out_channels=cout, attention=True, **block_kwargs) self.dec[f'{res}x{res}_in1'] = UNetBlock(in_channels=cout, out_channels=cout, **block_kwargs) else: self.dec[f'{res}x{res}_up'] = UNetBlock(in_channels=cout, out_channels=cout, up=True, **block_kwargs) for idx in range(num_blocks + 1): cin = cout + skips.pop() cout = model_channels * mult attn = (idx == num_blocks and res in attn_resolutions) self.dec[f'{res}x{res}_block{idx}'] = UNetBlock(in_channels=cin, out_channels=cout, attention=attn, **block_kwargs) if decoder_type == 'skip' or level == 0: if decoder_type == 'skip' and level < len(channel_mult) - 1: self.dec[f'{res}x{res}_aux_up'] = Conv2d(in_channels=out_channels, out_channels=out_channels, kernel=0, up=True, resample_filter=resample_filter) self.dec[f'{res}x{res}_aux_norm'] = GroupNorm(num_channels=cout, eps=1e-6) self.dec[f'{res}x{res}_aux_conv'] = Conv2d(in_channels=cout, out_channels=out_channels, kernel=3, init_weight=0.2, **init)# init_zero) def forward(self, x, film_camera_emb=None, N_views_xa=1): emb = None if film_camera_emb is not None: if self.emb_dim_in != 1: film_camera_emb = film_camera_emb.reshape( film_camera_emb.shape[0], 2, -1).flip(1).reshape(*film_camera_emb.shape) # swap sin/cos film_camera_emb = silu(self.map_layer0(film_camera_emb)) film_camera_emb = silu(self.map_layer1(film_camera_emb)) emb = film_camera_emb # Encoder. skips = [] aux = x for name, block in self.enc.items(): if 'aux_down' in name: aux = block(aux, N_views_xa) elif 'aux_skip' in name: x = skips[-1] = x + block(aux, N_views_xa) elif 'aux_residual' in name: x = skips[-1] = aux = (x + block(aux, N_views_xa)) / np.sqrt(2) else: x = block(x, emb=emb, N_views_xa=N_views_xa) if isinstance(block, UNetBlock) \ else block(x, N_views_xa=N_views_xa) skips.append(x) # Decoder. aux = None tmp = None for name, block in self.dec.items(): if 'aux_up' in name: aux = block(aux, N_views_xa) elif 'aux_norm' in name: tmp = block(x, N_views_xa) elif 'aux_conv' in name: tmp = block(silu(tmp), N_views_xa) aux = tmp if aux is None else tmp + aux else: if x.shape[1] != block.in_channels: # skip connection is pixel-aligned which is good for # foreground features # but it's not good for gradient flow and background features x = torch.cat([x, skips.pop()], dim=1) x = block(x, emb=emb, N_views_xa=N_views_xa) return aux class SingleImageSongUNetPredictor(nn.Module): def __init__(self, cfg, out_channels, bias, scale): super(SingleImageSongUNetPredictor, self).__init__() self.out_channels = out_channels self.cfg = cfg if cfg.cam_embd.embedding is None: in_channels = 3 emb_dim_in = 0 else: in_channels = 3 emb_dim_in = 6 * cfg.cam_embd.dimension self.encoder = SongUNet(cfg.data.training_resolution, in_channels, sum(out_channels), model_channels=cfg.model.base_dim, num_blocks=cfg.model.num_blocks, emb_dim_in=emb_dim_in, channel_mult_noise=0, attn_resolutions=cfg.model.attention_resolutions) self.out = nn.Conv2d(in_channels=sum(out_channels), out_channels=sum(out_channels), kernel_size=1) start_channels = 0 for out_channel, b, s in zip(out_channels, bias, scale): nn.init.xavier_uniform_( self.out.weight[start_channels:start_channels+out_channel, :, :, :], s) nn.init.constant_( self.out.bias[start_channels:start_channels+out_channel], b) start_channels += out_channel def forward(self, x, film_camera_emb=None, N_views_xa=1): x = self.encoder(x, film_camera_emb=film_camera_emb, N_views_xa=N_views_xa) return self.out(x) def networkCallBack(cfg, name, out_channels, **kwargs): assert name == "SingleUNet" return SingleImageSongUNetPredictor(cfg, out_channels, **kwargs) class GaussianSplatPredictor(nn.Module): def __init__(self, cfg): super(GaussianSplatPredictor, self).__init__() self.cfg = cfg assert cfg.model.network_with_offset or cfg.model.network_without_offset, \ "Need at least one network" if cfg.model.network_with_offset: split_dimensions, scale_inits, bias_inits = self.get_splits_and_inits(True, cfg) self.network_with_offset = networkCallBack(cfg, cfg.model.name, split_dimensions, scale = scale_inits, bias = bias_inits) assert not cfg.model.network_without_offset, "Can only have one network" if cfg.model.network_without_offset: split_dimensions, scale_inits, bias_inits = self.get_splits_and_inits(False, cfg) self.network_wo_offset = networkCallBack(cfg, cfg.model.name, split_dimensions, scale = scale_inits, bias = bias_inits) assert not cfg.model.network_with_offset, "Can only have one network" self.init_ray_dirs() # Activation functions for different parameters self.depth_act = nn.Sigmoid() self.scaling_activation = torch.exp self.opacity_activation = torch.sigmoid self.rotation_activation = torch.nn.functional.normalize if self.cfg.model.max_sh_degree > 0: self.init_sh_transform_matrices() if self.cfg.cam_embd.embedding is not None: if self.cfg.cam_embd.encode_embedding is None: self.cam_embedding_map = nn.Identity() elif self.cfg.cam_embd.encode_embedding == "positional": self.cam_embedding_map = PositionalEmbedding(self.cfg.cam_embd.dimension) def init_sh_transform_matrices(self): v_to_sh_transform = torch.tensor([[ 0, 0,-1], [-1, 0, 0], [ 0, 1, 0]], dtype=torch.float32) sh_to_v_transform = v_to_sh_transform.transpose(0, 1) self.register_buffer('sh_to_v_transform', sh_to_v_transform.unsqueeze(0)) self.register_buffer('v_to_sh_transform', v_to_sh_transform.unsqueeze(0)) def init_ray_dirs(self): x = torch.linspace(-self.cfg.data.training_resolution // 2 + 0.5, self.cfg.data.training_resolution // 2 - 0.5, self.cfg.data.training_resolution) y = torch.linspace( self.cfg.data.training_resolution // 2 - 0.5, -self.cfg.data.training_resolution // 2 + 0.5, self.cfg.data.training_resolution) if self.cfg.model.inverted_x: x = -x if self.cfg.model.inverted_y: y = -y grid_x, grid_y = torch.meshgrid(x, y, indexing='xy') ones = torch.ones_like(grid_x, dtype=grid_x.dtype) ray_dirs = torch.stack([grid_x, grid_y, ones]).unsqueeze(0) # for cars and chairs the focal length is fixed across dataset # so we can preprocess it # for co3d this is done on the fly if self.cfg.data.category not in ["hydrants", "teddybears"]: ray_dirs[:, :2, ...] /= fov2focal(self.cfg.data.fov * np.pi / 180, self.cfg.data.training_resolution) self.register_buffer('ray_dirs', ray_dirs) def get_splits_and_inits(self, with_offset, cfg): # Gets channel split dimensions and last layer initialisation split_dimensions = [] scale_inits = [] bias_inits = [] if with_offset: split_dimensions = split_dimensions + [1, 3, 1, 3, 4, 3] scale_inits = scale_inits + [cfg.model.depth_scale, cfg.model.xyz_scale, cfg.model.opacity_scale, cfg.model.scale_scale, 1.0, 5.0] bias_inits = [cfg.model.depth_bias, cfg.model.xyz_bias, cfg.model.opacity_bias, np.log(cfg.model.scale_bias), 0.0, 0.0] else: split_dimensions = split_dimensions + [1, 1, 3, 4, 3] scale_inits = scale_inits + [cfg.model.depth_scale, cfg.model.opacity_scale, cfg.model.scale_scale, 1.0, 5.0] bias_inits = bias_inits + [cfg.model.depth_bias, cfg.model.opacity_bias, np.log(cfg.model.scale_bias), 0.0, 0.0] if cfg.model.max_sh_degree != 0: sh_num = (self.cfg.model.max_sh_degree + 1) ** 2 - 1 sh_num_rgb = sh_num * 3 split_dimensions.append(sh_num_rgb) scale_inits.append(0.0) bias_inits.append(0.0) if with_offset: self.split_dimensions_with_offset = split_dimensions else: self.split_dimensions_without_offset = split_dimensions return split_dimensions, scale_inits, bias_inits def flatten_vector(self, x): # Gets rid of the image dimensions and flattens to a point list # B x C x H x W -> B x C x N -> B x N x C return x.reshape(x.shape[0], x.shape[1], -1).permute(0, 2, 1) def make_contiguous(self, tensor_dict): return {k: v.contiguous() for k, v in tensor_dict.items()} def multi_view_union(self, tensor_dict, B, N_view): for t_name, t in tensor_dict.items(): t = t.reshape(B, N_view, *t.shape[1:]) tensor_dict[t_name] = t.reshape(B, N_view * t.shape[2], *t.shape[3:]) return tensor_dict def get_camera_embeddings(self, cameras): # get embedding # pass through encoding b, n_view = cameras.shape[:2] if self.cfg.cam_embd.embedding == "index": cam_embedding = torch.arange(n_view, dtype=cameras.dtype, device=cameras.device, ).unsqueeze(0).expand(b, n_view).unsqueeze(2) if self.cfg.cam_embd.embedding == "pose": # concatenate origin and z-vector. cameras are in row-major order cam_embedding = torch.cat([cameras[:, :, 3, :3], cameras[:, :, 2, :3]], dim=2) cam_embedding = rearrange(cam_embedding, 'b n_view c -> (b n_view) c') cam_embedding = self.cam_embedding_map(cam_embedding) cam_embedding = rearrange(cam_embedding, '(b n_view) c -> b n_view c', b=b, n_view=n_view) return cam_embedding def transform_SHs(self, shs, source_cameras_to_world): # shs: B x N x SH_num x 3 # source_cameras_to_world: B 4 4 assert shs.shape[2] == 3, "Can only process shs order 1" shs = rearrange(shs, 'b n sh_num rgb -> b (n rgb) sh_num') transforms = torch.bmm( self.sh_to_v_transform.expand(source_cameras_to_world.shape[0], 3, 3), # transpose is because source_cameras_to_world is # in row major order source_cameras_to_world[:, :3, :3]) transforms = torch.bmm(transforms, self.v_to_sh_transform.expand(source_cameras_to_world.shape[0], 3, 3)) shs_transformed = torch.bmm(shs, transforms) shs_transformed = rearrange(shs_transformed, 'b (n rgb) sh_num -> b n sh_num rgb', rgb=3) return shs_transformed def transform_rotations(self, rotations, source_cv2wT_quat): """ Applies a transform that rotates the predicted rotations from camera space to world space. Args: rotations: predicted in-camera rotation quaternions (B x N x 4) source_cameras_to_world: transformation quaternions from camera-to-world matrices transposed(B x 4) Retures: rotations with appropriately applied transform to world space """ Mq = source_cv2wT_quat.unsqueeze(1).expand(*rotations.shape) rotations = quaternion_raw_multiply(Mq, rotations) return rotations def get_pos_from_network_output(self, depth_network, offset, focals_pixels, const_offset=None): # expands ray dirs along the batch dimension # adjust ray directions according to fov if not done already ray_dirs_xy = self.ray_dirs.expand(depth_network.shape[0], 3, *self.ray_dirs.shape[2:]) if self.cfg.data.category in ["hydrants", "teddybears"]: assert torch.all(focals_pixels > 0) ray_dirs_xy = ray_dirs_xy.clone() ray_dirs_xy[:, :2, ...] = ray_dirs_xy[:, :2, ...] / focals_pixels.unsqueeze(2).unsqueeze(3) # depth and offsets are shaped as (b 3 h w) if const_offset is not None: depth = self.depth_act(depth_network) * (self.cfg.data.zfar - self.cfg.data.znear) + self.cfg.data.znear + const_offset else: depth = self.depth_act(depth_network) * (self.cfg.data.zfar - self.cfg.data.znear) + self.cfg.data.znear pos = ray_dirs_xy * depth + offset return pos def forward(self, x, source_cameras_view_to_world, source_cv2wT_quat=None, focals_pixels=None, activate_output=True): B = x.shape[0] N_views = x.shape[1] # UNet attention will reshape outputs so that there is cross-view attention if self.cfg.model.cross_view_attention: N_views_xa = N_views else: N_views_xa = 1 if self.cfg.cam_embd.embedding is not None: cam_embedding = self.get_camera_embeddings(source_cameras_view_to_world) assert self.cfg.cam_embd.method == "film" film_camera_emb = cam_embedding.reshape(B*N_views, cam_embedding.shape[2]) else: film_camera_emb = None if self.cfg.data.category in ["hydrants", "teddybears"]: assert focals_pixels is not None focals_pixels = focals_pixels.reshape(B*N_views, *focals_pixels.shape[2:]) else: assert focals_pixels is None, "Unexpected argument for non-co3d dataset" x = x.reshape(B*N_views, *x.shape[2:]) if self.cfg.data.origin_distances: const_offset = x[:, 3:, ...] x = x[:, :3, ...] else: const_offset = None source_cameras_view_to_world = source_cameras_view_to_world.reshape(B*N_views, *source_cameras_view_to_world.shape[2:]) x = x.contiguous(memory_format=torch.channels_last) if self.cfg.model.network_with_offset: split_network_outputs = self.network_with_offset(x, film_camera_emb=film_camera_emb, N_views_xa=N_views_xa ) split_network_outputs = split_network_outputs.split(self.split_dimensions_with_offset, dim=1) depth, offset, opacity, scaling, rotation, features_dc = split_network_outputs[:6] if self.cfg.model.max_sh_degree > 0: features_rest = split_network_outputs[6] pos = self.get_pos_from_network_output(depth, offset, focals_pixels, const_offset=const_offset) else: split_network_outputs = self.network_wo_offset(x, film_camera_emb=film_camera_emb, N_views_xa=N_views_xa ).split(self.split_dimensions_without_offset, dim=1) depth, opacity, scaling, rotation, features_dc = split_network_outputs[:5] if self.cfg.model.max_sh_degree > 0: features_rest = split_network_outputs[5] pos = self.get_pos_from_network_output(depth, 0.0, focals_pixels, const_offset=const_offset) if self.cfg.model.isotropic: scaling_out = torch.cat([scaling[:, :1, ...], scaling[:, :1, ...], scaling[:, :1, ...]], dim=1) else: scaling_out = scaling # Pos prediction is in camera space - compute the positions in the world space pos = self.flatten_vector(pos) pos = torch.cat([pos, torch.ones((pos.shape[0], pos.shape[1], 1), device=pos.device, dtype=torch.float32) ], dim=2) pos = torch.bmm(pos, source_cameras_view_to_world) pos = pos[:, :, :3] / (pos[:, :, 3:] + 1e-10) out_dict = { "xyz": pos, "rotation": self.flatten_vector(self.rotation_activation(rotation)), "features_dc": self.flatten_vector(features_dc).unsqueeze(2) } if activate_output: out_dict["opacity"] = self.flatten_vector(self.opacity_activation(opacity)) out_dict["scaling"] = self.flatten_vector(self.scaling_activation(scaling_out)) else: out_dict["opacity"] = self.flatten_vector(opacity) out_dict["scaling"] = self.flatten_vector(scaling_out) assert source_cv2wT_quat is not None source_cv2wT_quat = source_cv2wT_quat.reshape(B*N_views, *source_cv2wT_quat.shape[2:]) out_dict["rotation"] = self.transform_rotations(out_dict["rotation"], source_cv2wT_quat=source_cv2wT_quat) if self.cfg.model.max_sh_degree > 0: features_rest = self.flatten_vector(features_rest) # Channel dimension holds SH_num * RGB(3) -> renderer expects split across RGB # Split channel dimension B x N x C -> B x N x SH_num x 3 out_dict["features_rest"] = features_rest.reshape(*features_rest.shape[:2], -1, 3) assert self.cfg.model.max_sh_degree == 1 # "Only accepting degree 1" out_dict["features_rest"] = self.transform_SHs(out_dict["features_rest"], source_cameras_view_to_world) else: out_dict["features_rest"] = torch.zeros((out_dict["features_dc"].shape[0], out_dict["features_dc"].shape[1], (self.cfg.model.max_sh_degree + 1) ** 2 - 1, 3), dtype=out_dict["features_dc"].dtype, device=out_dict["xyz"].device) out_dict = self.multi_view_union(out_dict, B, N_views) out_dict = self.make_contiguous(out_dict) return out_dict