Spaces:
Sleeping
Sleeping
Commit
·
1c602ce
1
Parent(s):
69c0c38
Upload app.py
Browse files
app.py
CHANGED
@@ -7,28 +7,25 @@ import scanpy as sc
|
|
7 |
|
8 |
#import mpld3
|
9 |
import matplotlib.pyplot as plt
|
10 |
-
#import seaborn as sns
|
11 |
|
|
|
12 |
|
13 |
-
#import
|
14 |
|
15 |
-
#from
|
16 |
|
17 |
-
from functions import pathway_analyses
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
# plt.rc('font', size=SMALL_SIZE) # controls default text sizes
|
24 |
-
# plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title
|
25 |
-
# plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels
|
26 |
-
# plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels
|
27 |
-
# plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels
|
28 |
-
# plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize
|
29 |
-
# plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
|
30 |
|
31 |
-
sc.settings.set_figure_params(dpi=80, facecolor='white')
|
|
|
32 |
|
33 |
#disable st.pyplot warning
|
34 |
st.set_page_config(layout="wide")
|
@@ -83,16 +80,6 @@ def get_data():
|
|
83 |
if 'go_table' not in st.session_state:
|
84 |
bp = pathway_analyses.read_pathways('pathway_databases/GO_Biological_Process_2021.txt')
|
85 |
|
86 |
-
# cy = pathway_analyses.read_pathways('pathway_databases/HumanCyc_2016.txt')
|
87 |
-
# ke = pathway_analyses.read_pathways('pathway_databases/KEGG_2019_Human.txt')
|
88 |
-
# re = pathway_analyses.read_pathways('pathway_databases/Reactome_2016.txt')
|
89 |
-
|
90 |
-
# all_paths = pd.concat([bp, cy, ke, re], join='outer', axis=0, ignore_index=True)
|
91 |
-
# all_paths.set_index(0, inplace=True)
|
92 |
-
# all_paths.fillna("", inplace=True)
|
93 |
-
# all_paths_dict = all_paths.to_dict(orient='index')
|
94 |
-
|
95 |
-
|
96 |
go_bp_paths = bp.set_index(0)
|
97 |
go_bp_paths.fillna("", inplace=True)
|
98 |
go_bp_paths_dict = go_bp_paths.to_dict(orient='index')
|
@@ -128,21 +115,10 @@ with tab1:
|
|
128 |
'Please select CellType',
|
129 |
st.session_state['cell_type']
|
130 |
)
|
131 |
-
# with c3:
|
132 |
-
# plot_choice = st.checkbox(
|
133 |
-
# "Which Plots",
|
134 |
-
# ('Gene','Old/Young'))
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
Updated=st.form_submit_button(label = 'Go')
|
139 |
if not isinstance(selected_gene, type(None)) and not isinstance(selected_celltype, type(None)) and Updated:
|
140 |
-
|
141 |
-
|
142 |
-
# fig11, axx1 = plt.subplots()
|
143 |
-
# sc.pl.umap(st.session_state['adata_annot'], color='new_anno', title='', legend_loc='on data',legend_fontsize='4', frameon=False,show=False, ax=axx1)
|
144 |
-
# st.pyplot(plt.gcf().set_size_inches(4, 4))
|
145 |
-
|
146 |
col1,col2= st.columns([1,1])
|
147 |
with col1:
|
148 |
fig11, axx11 = plt.subplots(figsize=(5,5))
|
@@ -152,8 +128,11 @@ with tab1:
|
|
152 |
with col2:
|
153 |
fig12, axx12 = plt.subplots(figsize=(5,5))
|
154 |
#sc.pl.umap(st.session_state['adata_annot'], color='new_anno', title='', legend_loc='on data', frameon=False,show=False, ax=axx2)
|
155 |
-
sc.pl.umap(st.session_state['adata_annot'], color=selected_gene, title=
|
156 |
#plt.xticks(rotation = 45)
|
|
|
|
|
|
|
157 |
st.pyplot(fig12)
|
158 |
|
159 |
#Subset Younv and Old
|
@@ -170,83 +149,42 @@ with tab1:
|
|
170 |
|
171 |
#Young
|
172 |
dot_size=.05
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
st.pyplot(plt.gcf())
|
188 |
-
with col2:
|
189 |
-
str_title='Young: '+selected_gene+" ("+selected_celltype+")"
|
190 |
-
st.markdown("# {} ".format(str_title))#,align_text='center')
|
191 |
-
fig22, axx22 = plt.subplots(figsize=(1,1))
|
192 |
-
#sc.pl.umap(st.session_state['adata_annot'], color='new_anno', title='', legend_loc='on data', frameon=False,show=False, ax=axx2)
|
193 |
-
#sc.pl.umap(st.session_state['adata_annot'], color=selected_gene, title=selected_gene, legend_loc='best', frameon=False,show=False, ax=axx2)#,vmax='p99')
|
194 |
-
sc.pl.umap(adata_YoungAst, color=selected_gene, title="", legend_loc='right margin', color_map='viridis', frameon=False,show=False,size=dot_size,legend_fontsize='xx-small',colorbar_loc=None, ax=axx22)
|
195 |
-
#sc.pl.umap(adata_Old, color=selected_gene, title="Old: "+selected_gene, legend_loc='right margin', color_map='viridis', frameon=False,show=False, ax=axx22)
|
196 |
-
#plt.xticks(rotation = 45)
|
197 |
-
#st.pyplot(fig22)
|
198 |
-
st.pyplot(plt.gcf())
|
199 |
-
#Old
|
200 |
-
col1,col2= st.columns([1,1])
|
201 |
-
with col1:
|
202 |
-
str_title='Old: '+selected_gene+" ("+selected_celltype+")"
|
203 |
-
st.markdown("# {} ".format(str_title))#,align_text='center')
|
204 |
-
|
205 |
-
fig31, axx31 = plt.subplots(figsize=(1,1))
|
206 |
-
#sc.pl.umap(st.session_state['adata_annot'], color='new_anno', title='', legend_loc='on data',legend_fontsize='8', frameon=False,show=False, ax=axx1)
|
207 |
-
sc.pl.umap(adata_Old, color=selected_gene, title="", legend_loc='right margin', color_map='viridis', frameon=False,show=False,size=dot_size,legend_fontsize='xx-small', colorbar_loc="bottom",ax=axx31)
|
208 |
-
st.pyplot(fig31)
|
209 |
-
with col2:
|
210 |
-
str_title='Old: '+selected_gene+" ("+selected_celltype+")"
|
211 |
-
st.markdown("# {} ".format(str_title))#,align_text='center')
|
212 |
-
|
213 |
-
fig32, axx32 = plt.subplots(figsize=(1,1))
|
214 |
-
#sc.pl.umap(st.session_state['adata_annot'], color='new_anno', title='', legend_loc='on data', frameon=False,show=False, ax=axx2)
|
215 |
-
#sc.pl.umap(st.session_state['adata_annot'], color=selected_gene, title=selected_gene, legend_loc='best', frameon=False,show=False, ax=axx2)#,vmax='p99')
|
216 |
-
sc.pl.umap(adata_OldAst, color=selected_gene, title="", legend_loc='right margin', color_map='viridis', frameon=False,show=False,size=dot_size,legend_fontsize='xx-small', colorbar_loc="bottom",ax=axx32)
|
217 |
-
#plt.xticks(rotation = 45)
|
218 |
-
st.pyplot(fig32)
|
219 |
-
|
220 |
-
# fig, ax = plt.subplots(3,2)
|
221 |
-
# sc.pl.umap(st.session_state['adata_annot'], color='new_anno', title='', legend_loc='on data', frameon=False,show=False, ax=ax[0,0])
|
222 |
-
# sc.pl.umap(st.session_state['adata_annot'], color=selected_gene, title=selected_gene, legend_loc='best', frameon=False,show=False, ax=ax[0,1],vmax='p99')
|
223 |
-
|
224 |
-
# #Subset Younv and Old
|
225 |
-
# adata_Young = st.session_state['adata_annot'][st.session_state['adata_annot'].obs['Age_group']=='young']
|
226 |
-
# adata_Old = st.session_state['adata_annot'][st.session_state['adata_annot'].obs['Age_group']=='old']
|
227 |
-
# sc.pl.umap(adata_Young, color=selected_gene, title="Young: "+selected_gene, legend_loc='right margin', color_map='viridis',frameon=False,show=False, ax=ax[1,0])
|
228 |
-
# sc.pl.umap(adata_Old, color=selected_gene, title="Old: "+selected_gene, legend_loc='right margin', color_map='viridis', frameon=False,show=False, ax=ax[2,0])
|
229 |
-
|
230 |
-
# # #Young/Old but for cell_type
|
231 |
-
# # adata_YoungAst = adata_Young[adata_Young.obs['broad_celltype']==selected_celltype]
|
232 |
-
# # adata_OldAst = adata_Old[adata_Old.obs['broad_celltype']==selected_celltype]
|
233 |
-
|
234 |
-
# #Young/Old but for cell_type
|
235 |
-
# adata_YoungAst = adata_Young[adata_Young.obs['new_anno']==selected_celltype]
|
236 |
-
# adata_OldAst = adata_Old[adata_Old.obs['new_anno']==selected_celltype]
|
237 |
-
|
238 |
-
|
239 |
-
# sc.pl.umap(adata_YoungAst, color=selected_gene, title=selected_celltype, legend_loc='right margin', color_map='viridis', frameon=False,show=False, ax=ax[1,1])
|
240 |
-
# sc.pl.umap(adata_OldAst, color=selected_gene, title=selected_celltype, legend_loc='right margin', color_map='viridis', frameon=False,show=False, ax=ax[2,1])
|
241 |
-
|
242 |
-
# #sc.pl.umap(st.session_state['adata_annot'], color='Brain_region', title='Brain Region', legend_loc='right margin', frameon=False,show=False, ax=ax[1,1])
|
243 |
-
# #sc.pl.umap(st.session_state['adata_annot'], color='Age_group', title='Age Group', legend_loc='right margin', frameon=False,show=False, ax=ax[2,0])
|
244 |
-
# #sc.pl.umap(st.session_state['adata_annot'], color=selected_celltype, title=selected_celltype, legend_loc='on data', frameon=False,show=False, ax=ax[2,1])
|
245 |
|
|
|
246 |
|
247 |
-
#
|
248 |
-
|
249 |
-
|
250 |
|
251 |
with tab2:
|
252 |
with st.form(key='multiselect_form'):
|
@@ -271,25 +209,19 @@ with tab2:
|
|
271 |
else:
|
272 |
multi_genes=st.session_state['go_table'].loc[:,go_term]
|
273 |
multi_genes=multi_genes.dropna().values
|
|
|
274 |
#multi_genes=['WNT3', 'VPS13C', 'VAMP4', 'UBTF', 'UBAP2', 'TMEM175', 'TMEM163', 'SYT17', 'STK39', 'SPPL2B', 'SIPA1L2', 'SH3GL2', 'SCARB2', 'SCAF11', 'RPS6KL1', 'RPS12', 'RIT2', 'RIMS1', 'RETREG3', 'PMVK', 'PAM', 'NOD2', 'MIPOL1', 'MEX3C', 'MED12L', 'MCCC1', 'MBNL2', 'MAPT', 'LRRK2', 'KRTCAP2', 'KCNS3', 'KCNIP3', 'ITGA8', 'IP6K2', 'GPNMB', 'GCH1', 'GBA', 'FYN', 'FCGR2A', 'FBRSL1', 'FAM49B', 'FAM171A2', 'ELOVL7', 'DYRK1A', 'DNAH17', 'DLG2', 'CTSB', 'CRLS1', 'CRHR1', 'CLCN3', 'CHRNB1', 'CAMK2D', 'CAB39L', 'BRIP1', 'BIN3', 'ASXL3', 'SNCA']
|
275 |
#########
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
# #sc.pl.umap(st.session_state['adata_annot'], color='new_anno', title='', legend_loc='on data',legend_fontsize='8', frameon=False,show=False, ax=axx11)
|
287 |
-
# axxaa=sc.pl.clustermap(st.session_state['adata_annot'], obs_keys=multi_genes) #,'new_anno',size_title='Fraction of\n Expressing Cells',colorbar_title='Mean\nExpression',cmap='BuPu',swap_axes=True,show=False,vmax=5)
|
288 |
-
# #st.pyplot(fig11)
|
289 |
-
# #st.pyplot(plt.gcf().set_size_inches(fig_szx, fig_szy))
|
290 |
-
# st.pyplot(plt.gcf())
|
291 |
-
|
292 |
-
|
293 |
|
294 |
col1,col2= st.columns([1,1])
|
295 |
#fig_szx=2*len(st.session_state['cell_type'])
|
@@ -303,9 +235,11 @@ with tab2:
|
|
303 |
st.pyplot(plt.gcf())
|
304 |
with col2:
|
305 |
fig12, axx12 = plt.subplots(figsize=(5, 5))
|
|
|
306 |
#sc.pl.umap(st.session_state['adata_annot'], color='new_anno', title='', legend_loc='on data', frameon=False,show=False, ax=axx2)
|
307 |
#sc.pl.umap(st.session_state['adata_annot'], color=selected_gene, title=selected_gene, legend_loc='best', frameon=False,show=False,legend_fontsize='xx-small', ax=axx12)#,vmax='p99')
|
308 |
-
axx12=sc.pl.heatmap(st.session_state['adata_annot'], multi_genes, groupby='new_anno', vmin=-1, vmax=1, cmap='BuPu', dendrogram=True, swap_axes=True)#,ax=ax2)
|
|
|
309 |
#plt.xticks(rotation = 45)
|
310 |
#st.pyplot(fig12)
|
311 |
#st.pyplot(plt.gcf().set_size_inches(fig_szx, fig_szy))
|
|
|
7 |
|
8 |
#import mpld3
|
9 |
import matplotlib.pyplot as plt
|
|
|
10 |
|
11 |
+
#from mpl_toolkits.axes_grid1 import make_axes_locatable
|
12 |
|
13 |
+
#import matplotlib.gridspec as gridspec
|
14 |
|
15 |
+
#from sunbird.categorical_encoding import frequency_encoding
|
16 |
|
|
|
17 |
|
18 |
+
import seaborn as sns
|
19 |
+
|
20 |
+
plt.rcParams.update({'figure.autolayout': True})
|
21 |
+
plt.rcParams['axes.linewidth'] = 0.0001
|
22 |
+
|
23 |
+
|
24 |
+
from functions import pathway_analyses
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
#sc.settings.set_figure_params(dpi=80, facecolor='white',fontsize=4)
|
28 |
+
sc.settings.set_figure_params(dpi=80, facecolor='white',fontsize=12)
|
29 |
|
30 |
#disable st.pyplot warning
|
31 |
st.set_page_config(layout="wide")
|
|
|
80 |
if 'go_table' not in st.session_state:
|
81 |
bp = pathway_analyses.read_pathways('pathway_databases/GO_Biological_Process_2021.txt')
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
go_bp_paths = bp.set_index(0)
|
84 |
go_bp_paths.fillna("", inplace=True)
|
85 |
go_bp_paths_dict = go_bp_paths.to_dict(orient='index')
|
|
|
115 |
'Please select CellType',
|
116 |
st.session_state['cell_type']
|
117 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
Updated=st.form_submit_button(label = 'Go')
|
119 |
if not isinstance(selected_gene, type(None)) and not isinstance(selected_celltype, type(None)) and Updated:
|
120 |
+
fig = plt.figure(figsize=(6, 6))
|
121 |
+
|
|
|
|
|
|
|
|
|
122 |
col1,col2= st.columns([1,1])
|
123 |
with col1:
|
124 |
fig11, axx11 = plt.subplots(figsize=(5,5))
|
|
|
128 |
with col2:
|
129 |
fig12, axx12 = plt.subplots(figsize=(5,5))
|
130 |
#sc.pl.umap(st.session_state['adata_annot'], color='new_anno', title='', legend_loc='on data', frameon=False,show=False, ax=axx2)
|
131 |
+
sc.pl.umap(st.session_state['adata_annot'], color=selected_gene, title='', legend_loc='best', frameon=False,show=False,legend_fontsize='xx-small', ax=axx12)#,vmax='p99')
|
132 |
#plt.xticks(rotation = 45)
|
133 |
+
#plt.colorbar(cax=cax)
|
134 |
+
axx12.set_title(selected_gene, fontsize=12)
|
135 |
+
|
136 |
st.pyplot(fig12)
|
137 |
|
138 |
#Subset Younv and Old
|
|
|
149 |
|
150 |
#Young
|
151 |
dot_size=.05
|
152 |
+
font_sz=4
|
153 |
+
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2,figsize=(3,3))
|
154 |
+
#plt.subplots_adjust(wspace=0, hspace=0)
|
155 |
+
#plt.tight_layout()
|
156 |
+
#fig.tight_layout(rect=[0, 0.03, 1, 0.95]) #[left, bottom, right, top]
|
157 |
+
sc.pl.umap(adata_Young, color=selected_gene, title="", legend_loc='right margin', color_map='viridis',frameon=True,show=False,size=dot_size, legend_fontsize='xx-small',colorbar_loc=None,ax=ax1)
|
158 |
+
ax1.set_title('All', fontsize=font_sz)
|
159 |
+
ax1.set_ylabel('Young', fontsize=font_sz)
|
160 |
+
#ax1.set_xlabel('', fontsize=0)
|
161 |
+
ax1.get_xaxis().set_visible(False)
|
162 |
+
sc.pl.umap(adata_YoungAst, color=selected_gene, title="", legend_loc='right margin', color_map='viridis', frameon=True,show=False,size=dot_size,legend_fontsize='xx-small',colorbar_loc=None, ax=ax2)
|
163 |
+
ax2.set_title(selected_celltype, fontsize=font_sz)
|
164 |
+
#ax2.set_xlabel('', fontsize=0)
|
165 |
+
ax2.set_ylabel('', fontsize=0)
|
166 |
+
ax2.get_xaxis().set_visible(False)
|
167 |
+
ax2.get_yaxis().set_visible(False)
|
168 |
+
sc.pl.umap(adata_Old, color=selected_gene, title="", legend_loc='right margin', color_map='viridis', frameon=True,show=False,size=dot_size,legend_fontsize='xx-small', colorbar_loc="bottom",ax=ax3)
|
169 |
|
170 |
+
#ax3.set_xlabel('x-label', fontsize=12)
|
171 |
+
ax3.set_ylabel('Old', fontsize=font_sz)
|
172 |
+
#ax3.set_xlabel('', fontsize=0)
|
173 |
+
ax3.get_xaxis().set_visible(False)
|
174 |
+
#ax3.get_title().set_visible(False)
|
175 |
+
sc.pl.umap(adata_OldAst, color=selected_gene, title="", legend_loc='right margin', color_map='viridis', frameon=True,show=False,size=dot_size,legend_fontsize='xx-small', colorbar_loc="bottom",ax=ax4)
|
176 |
+
#ax4.set_xlabel('', fontsize=0)
|
177 |
+
#ax4.set_ylabel('', fontsize=0)
|
178 |
+
ax4.get_xaxis().set_visible(False)
|
179 |
+
ax4.get_yaxis().set_visible(False)
|
180 |
+
#ax4.get_title().set_visible(False)
|
181 |
+
plt.suptitle(selected_gene+"\ncoefficient estimate: 0.24 | BH-FDR p=7.91x$10^{-3}$",fontsize=font_sz)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
+
#plt.subplots_adjust(top=0.95)
|
184 |
|
185 |
+
#plt.tight_layout(pad=0, w_pad=0, h_pad=0)
|
186 |
+
#plt.tight_layout()
|
187 |
+
st.pyplot(plt.gcf())
|
188 |
|
189 |
with tab2:
|
190 |
with st.form(key='multiselect_form'):
|
|
|
209 |
else:
|
210 |
multi_genes=st.session_state['go_table'].loc[:,go_term]
|
211 |
multi_genes=multi_genes.dropna().values
|
212 |
+
multi_genes=np.sort(multi_genes)
|
213 |
#multi_genes=['WNT3', 'VPS13C', 'VAMP4', 'UBTF', 'UBAP2', 'TMEM175', 'TMEM163', 'SYT17', 'STK39', 'SPPL2B', 'SIPA1L2', 'SH3GL2', 'SCARB2', 'SCAF11', 'RPS6KL1', 'RPS12', 'RIT2', 'RIMS1', 'RETREG3', 'PMVK', 'PAM', 'NOD2', 'MIPOL1', 'MEX3C', 'MED12L', 'MCCC1', 'MBNL2', 'MAPT', 'LRRK2', 'KRTCAP2', 'KCNS3', 'KCNIP3', 'ITGA8', 'IP6K2', 'GPNMB', 'GCH1', 'GBA', 'FYN', 'FCGR2A', 'FBRSL1', 'FAM49B', 'FAM171A2', 'ELOVL7', 'DYRK1A', 'DNAH17', 'DLG2', 'CTSB', 'CRLS1', 'CRHR1', 'CLCN3', 'CHRNB1', 'CAMK2D', 'CAB39L', 'BRIP1', 'BIN3', 'ASXL3', 'SNCA']
|
214 |
#########
|
215 |
+
figxx = plt.subplots(figsize=(5, 5))
|
216 |
+
hmpdat=st.session_state['adata_annot'][:, multi_genes] #.to_df()
|
217 |
+
#st.write(hmpdat)
|
218 |
+
samples=hmpdat.obs.new_anno
|
219 |
+
dfh = pd.DataFrame(hmpdat.X.toarray(), columns = multi_genes)
|
220 |
+
dfh=dfh.T
|
221 |
+
dfh.columns=samples.values.to_list()
|
222 |
+
sns.clustermap(dfh)
|
223 |
+
st.pyplot(plt.gcf())
|
224 |
+
######
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
col1,col2= st.columns([1,1])
|
227 |
#fig_szx=2*len(st.session_state['cell_type'])
|
|
|
235 |
st.pyplot(plt.gcf())
|
236 |
with col2:
|
237 |
fig12, axx12 = plt.subplots(figsize=(5, 5))
|
238 |
+
|
239 |
#sc.pl.umap(st.session_state['adata_annot'], color='new_anno', title='', legend_loc='on data', frameon=False,show=False, ax=axx2)
|
240 |
#sc.pl.umap(st.session_state['adata_annot'], color=selected_gene, title=selected_gene, legend_loc='best', frameon=False,show=False,legend_fontsize='xx-small', ax=axx12)#,vmax='p99')
|
241 |
+
axx12=sc.pl.heatmap(st.session_state['adata_annot'], multi_genes, groupby='new_anno', vmin=-1, vmax=1, cmap='BuPu', dendrogram=True, swap_axes=True,var_group_rotation="45")#,ax=ax2)
|
242 |
+
plt.xticks(rotation = 45)
|
243 |
#plt.xticks(rotation = 45)
|
244 |
#st.pyplot(fig12)
|
245 |
#st.pyplot(plt.gcf().set_size_inches(fig_szx, fig_szy))
|