import torch from transformers import (T5ForConditionalGeneration,T5Tokenizer) import gradio as gr best_model_path = "swcrazyfan/Dekingify-T5-Large" model = T5ForConditionalGeneration.from_pretrained(best_model_path) tokenizer = T5Tokenizer.from_pretrained("swcrazyfan/Dekingify-T5-Large") def tokenize_data(text): # Tokenize the review body # input_ = "paraphrase: "+ str(text) + ' >' input_ = "dekingify: " + str(text) + ' ' max_len = 512 # tokenize inputs tokenized_inputs = tokenizer(input_, padding='max_length', truncation=True, max_length=max_len, return_attention_mask=True, return_tensors='pt') inputs={"input_ids": tokenized_inputs['input_ids'], "attention_mask": tokenized_inputs['attention_mask']} return inputs def generate_answers(text, max_length, min_length, num_beams): inputs = tokenize_data(text) results= model.generate(input_ids= inputs['input_ids'], attention_mask=inputs['attention_mask'], do_sample=True, num_beams=num_beams, max_length=max_length, min_length=min_length, early_stopping=True, num_return_sequences=1) answer = tokenizer.decode(results[0], skip_special_tokens=True) return answer iface = gr.Interface(title="DeKingify", description="Write anything below. Then, click submit to 'DeKingify' it.", fn=generate_answers, inputs=[gr.inputs.Textbox(label="Original Text",lines=10), gr.inputs.Slider(label="Maximum Length", minimum=1, maximum=512, default=512, step=1), gr.inputs.Slider(label="Minimum Length", minimum=1, maximum=512, default=1, step=1), gr.inputs.Slider(label="Number of Beams", minimum=1, maximum=10, default=5, step=1)], outputs=["text"]) iface.launch(inline=False)