import torch from transformers import (T5ForConditionalGeneration,T5Tokenizer) import gradio as gr best_model_path = "swcrazyfan/Dekingify-T5-Large" model = T5ForConditionalGeneration.from_pretrained(best_model_path) tokenizer = T5Tokenizer.from_pretrained("swcrazyfan/Dekingify-T5-Large") def tokenize_data(text): # Tokenize the review body # input_ = "paraphrase: "+ str(text) + ' >' input_ = "deking: " + str(text) + ' ' max_len = 512 # tokenize inputs tokenized_inputs = tokenizer(input_, padding='max_length', truncation=True, max_length=max_len, return_attention_mask=True, return_tensors='pt') inputs={"input_ids": tokenized_inputs['input_ids'], "attention_mask": tokenized_inputs['attention_mask']} return inputs def generate_answers(text): inputs = tokenize_data(text) results= model.generate(input_ids= inputs['input_ids'], attention_mask=inputs['attention_mask'], do_sample=True, num_beams=5, max_length=512, min_length=1, early_stopping=True, num_return_sequences=1) answer = tokenizer.decode(results[0], skip_special_tokens=True) return answer #iface = gr.Interface(fn=generate_answers, inputs=["Write your text here..."], outputs=["Jamesified text"]) #iface.launch(inline=False, share=True) iface = gr.Interface(title="DeKingify", description="Write any English text from the 17th-century. Then, click submit to 'Dekingify' it (try to rephrase it in modern, English language).", fn=generate_answers, inputs=[gr.inputs.Textbox(label="Original Text",lines=10)], outputs=["text"]) #iface = gr.Interface(title="King Jamesify” fn=generate_answers, inputs=[gr.inputs.Textbox(label="Original",lines=30)],outputs=[gr.outputs.Textbox(label="King Jamesified", lines=30)]) iface.launch(inline=False)