import os import time import streamlit as st from dotenv import load_dotenv from transformers import pipeline # Model to load MODEL_TO_LOAD = "swastik-kapture/offenseval-xlmr-v3" TOKENIZER = "xlm-roberta-base" # create classification pipeline trained_model = pipeline("text-classification", model=MODEL_TO_LOAD, tokenizer=TOKENIZER, token=os.environ.get("HF_READ_KEY")) # Streamlit App def main(): # create a session state for conversation history if 'conversation_history' not in st.session_state: st.session_state.conversation_history = [] # streamlit title st.title("OffensEval: Profanity Detection") # user message user_message = st.chat_input("Say something") # if user input is present try to predict the outcome if user_message: # append user message to history st.session_state.conversation_history.append(('user', user_message, time.time())) # get predicted output output = trained_model.predict(user_message) # get predictied label and score label = output[0]['label'] score = output[0]['score'] # default color color = "white" # get the color based on label if label == "not offensive": color = "green" elif label == "offensive": color = "red" st.session_state.conversation_history.append(('assistant', f"