Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
import pandas as pd
|
2 |
import os
|
|
|
3 |
import gradio as gr
|
4 |
from langchain.document_loaders import CSVLoader
|
5 |
from langchain.vectorstores import FAISS
|
@@ -7,36 +7,34 @@ from langchain.embeddings import HuggingFaceEmbeddings
|
|
7 |
from langchain.chains import RetrievalQA
|
8 |
from langchain_groq import ChatGroq
|
9 |
|
10 |
-
# Set up your API key for ChatGroq
|
11 |
-
os.environ["GROQ_API_KEY"] = "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" # Replace with your actual API key
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
# Instantiate the ChatGroq model
|
17 |
llm = ChatGroq(
|
18 |
-
model="mixtral-8x7b-32768",
|
19 |
temperature=0,
|
20 |
max_tokens=None,
|
21 |
timeout=None,
|
22 |
max_retries=2
|
23 |
)
|
24 |
|
25 |
-
#
|
26 |
def process_query(file, query):
|
27 |
try:
|
28 |
-
# Load the CSV as documents for retrieval
|
29 |
loader = CSVLoader(file_path=file.name)
|
30 |
documents = loader.load()
|
31 |
|
32 |
-
#
|
33 |
vector_store = FAISS.from_documents(documents, embeddings)
|
34 |
-
|
35 |
-
# Create a retriever from the vector store
|
36 |
retriever = vector_store.as_retriever()
|
37 |
-
|
38 |
-
|
39 |
-
qa_chain = RetrievalQA.from_chain_type(
|
40 |
llm=llm,
|
41 |
retriever=retriever,
|
42 |
return_source_documents=True
|
@@ -52,20 +50,19 @@ def process_query(file, query):
|
|
52 |
except Exception as e:
|
53 |
return f"An error occurred: {str(e)}", ""
|
54 |
|
55 |
-
#
|
56 |
interface = gr.Interface(
|
57 |
fn=process_query,
|
58 |
inputs=[
|
59 |
-
gr.File(label="Upload CSV File"),
|
60 |
-
gr.Textbox(label="Enter your query")
|
61 |
],
|
62 |
outputs=[
|
63 |
-
gr.Textbox(label="Answer"),
|
64 |
-
gr.Textbox(label="Source Documents") #
|
65 |
],
|
66 |
-
title="
|
67 |
-
description="Upload
|
68 |
)
|
69 |
|
70 |
-
# Launch the Gradio app
|
71 |
interface.launch(share=True)
|
|
|
|
|
1 |
import os
|
2 |
+
import pandas as pd
|
3 |
import gradio as gr
|
4 |
from langchain.document_loaders import CSVLoader
|
5 |
from langchain.vectorstores import FAISS
|
|
|
7 |
from langchain.chains import RetrievalQA
|
8 |
from langchain_groq import ChatGroq
|
9 |
|
|
|
|
|
10 |
|
11 |
+
api_key = os.environ.get("GROQ_API_KEY")
|
12 |
+
if not api_key:
|
13 |
+
raise ValueError("Api key not found")
|
14 |
+
|
15 |
+
os.environ["GROQ_API_KEY"] = api_key
|
16 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
17 |
+
|
18 |
|
|
|
19 |
llm = ChatGroq(
|
20 |
+
model="mixtral-8x7b-32768",
|
21 |
temperature=0,
|
22 |
max_tokens=None,
|
23 |
timeout=None,
|
24 |
max_retries=2
|
25 |
)
|
26 |
|
27 |
+
# function to process query and CSV
|
28 |
def process_query(file, query):
|
29 |
try:
|
|
|
30 |
loader = CSVLoader(file_path=file.name)
|
31 |
documents = loader.load()
|
32 |
|
33 |
+
# FAISS vector store
|
34 |
vector_store = FAISS.from_documents(documents, embeddings)
|
|
|
|
|
35 |
retriever = vector_store.as_retriever()
|
36 |
+
|
37 |
+
qa_chain = RetrievalQA.from_chain_type( #RetrievalQA pipeline
|
|
|
38 |
llm=llm,
|
39 |
retriever=retriever,
|
40 |
return_source_documents=True
|
|
|
50 |
except Exception as e:
|
51 |
return f"An error occurred: {str(e)}", ""
|
52 |
|
53 |
+
# Gradio interface
|
54 |
interface = gr.Interface(
|
55 |
fn=process_query,
|
56 |
inputs=[
|
57 |
+
gr.File(label="Upload CSV File"),
|
58 |
+
gr.Textbox(label="Enter your query")
|
59 |
],
|
60 |
outputs=[
|
61 |
+
gr.Textbox(label="Answer"),
|
62 |
+
gr.Textbox(label="Source Documents") #
|
63 |
],
|
64 |
+
title="DataScope.ai",
|
65 |
+
description="Upload & Unlock Insights from Your Data – Ask, Query, Discover!"
|
66 |
)
|
67 |
|
|
|
68 |
interface.launch(share=True)
|