import gc import gradio as gr import numpy as np import torch from huggingface_hub import hf_hub_download from PIL.Image import Resampling from pytorchvideo.data.encoded_video import EncodedVideo from pytorchvideo.transforms.functional import uniform_temporal_subsample from torchvision.io import write_video from torchvision.transforms.functional import resize from modeling import Generator MAX_DURATION = 60 OUT_FPS = 18 DEVICE = "cpu" if not torch.cuda.is_available() else "cuda" # Reupload of model found here: https://huggingface.co/spaces/awacke1/Image2LineDrawing model = Generator(3, 1, 3) weights_path = hf_hub_download("nateraw/image-2-line-drawing", "pytorch_model.bin") model.load_state_dict(torch.load(weights_path, map_location=DEVICE)) model.eval() def process_one_second(vid, start_sec, out_fps): """Process one second of a video at a given fps Args: vid (_type_): A pytorchvideo.EncodedVideo instance containing the video to process start_sec (_type_): The second to start processing at out_fps (_type_): The fps to output the video at Returns: np.array: The processed video as a numpy array with shape (T, H, W, C) """ # C, T, H, W video_arr = vid.get_clip(start_sec, start_sec + 1)["video"] # C, T, H, W where T == frames per second x = uniform_temporal_subsample(video_arr, out_fps) # C, T, H, W where H has been scaled to 256 (This will probably be no bueno on vertical vids but whatever) x = resize(x, 256, Resampling.BICUBIC) # C, T, H, W -> T, C, H, W (basically T acts as batch size now) x = x.permute(1, 0, 2, 3) with torch.no_grad(): # T, 1, H, W out = model(x) # T, C, H, W -> T, H, W, C Rescaled to 0-255 out = out.permute(0, 2, 3, 1).clip(0, 1) * 255 # Greyscale -> RGB out = out.repeat(1, 1, 1, 3) return out def fn(fpath): start_sec = 0 vid = EncodedVideo.from_path(fpath) duration = min(MAX_DURATION, int(vid.duration)) for i in range(duration): print(f"🖼️ Processing step {i + 1}/{duration}...") video = process_one_second(vid, start_sec=i + start_sec, out_fps=OUT_FPS) gc.collect() if i == 0: video_all = video else: video_all = np.concatenate((video_all, video)) write_video("out.mp4", video_all, fps=OUT_FPS) return "out.mp4" ''' webcam_interface = gr.Interface( fn, gr.Video(source="webcam"), gr.Video(type="file", format="mp4") ) ''' video_interface = gr.Interface( fn, gr.Video(), gr.Video() ) video_interface.launch(share = True) ''' if __name__ == '__main__': gr.TabbedInterface( [webcam_interface, video_interface], ["Run on Your Webcam!", "Run on Videos!"], ).launch() '''