Spaces:
Runtime error
Runtime error
Upload predict.py
Browse files- predict.py +60 -0
predict.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
|
| 3 |
+
def batch_as_list(a, batch_size = int(100000)):
|
| 4 |
+
req = []
|
| 5 |
+
for ele in a:
|
| 6 |
+
if not req:
|
| 7 |
+
req.append([])
|
| 8 |
+
if len(req[-1]) < batch_size:
|
| 9 |
+
req[-1].append(ele)
|
| 10 |
+
else:
|
| 11 |
+
req.append([])
|
| 12 |
+
req[-1].append(ele)
|
| 13 |
+
return req
|
| 14 |
+
|
| 15 |
+
class Obj:
|
| 16 |
+
def __init__(self, model, tokenizer, device = "cpu"):
|
| 17 |
+
self.model = model
|
| 18 |
+
self.tokenizer = tokenizer
|
| 19 |
+
self.device = device
|
| 20 |
+
self.model = self.model.to(self.device)
|
| 21 |
+
|
| 22 |
+
def predict(
|
| 23 |
+
self,
|
| 24 |
+
source_text: str,
|
| 25 |
+
max_length: int = 512,
|
| 26 |
+
num_return_sequences: int = 1,
|
| 27 |
+
num_beams: int = 2,
|
| 28 |
+
top_k: int = 50,
|
| 29 |
+
top_p: float = 0.95,
|
| 30 |
+
do_sample: bool = True,
|
| 31 |
+
repetition_penalty: float = 2.5,
|
| 32 |
+
length_penalty: float = 1.0,
|
| 33 |
+
early_stopping: bool = True,
|
| 34 |
+
skip_special_tokens: bool = True,
|
| 35 |
+
clean_up_tokenization_spaces: bool = True,
|
| 36 |
+
):
|
| 37 |
+
input_ids = self.tokenizer.encode(
|
| 38 |
+
source_text, return_tensors="pt", add_special_tokens=True
|
| 39 |
+
)
|
| 40 |
+
input_ids = input_ids.to(self.device)
|
| 41 |
+
generated_ids = self.model.generate(
|
| 42 |
+
input_ids=input_ids,
|
| 43 |
+
num_beams=num_beams,
|
| 44 |
+
max_length=max_length,
|
| 45 |
+
repetition_penalty=repetition_penalty,
|
| 46 |
+
length_penalty=length_penalty,
|
| 47 |
+
early_stopping=early_stopping,
|
| 48 |
+
top_p=top_p,
|
| 49 |
+
top_k=top_k,
|
| 50 |
+
num_return_sequences=num_return_sequences,
|
| 51 |
+
)
|
| 52 |
+
preds = [
|
| 53 |
+
self.tokenizer.decode(
|
| 54 |
+
g,
|
| 55 |
+
skip_special_tokens=skip_special_tokens,
|
| 56 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 57 |
+
)
|
| 58 |
+
for g in generated_ids
|
| 59 |
+
]
|
| 60 |
+
return preds
|