TableQA-Chinese / JointBERT-master /model /modeling_jointalbert.py
svjack's picture
Update JointBERT-master/model/modeling_jointalbert.py
149d0e5
raw
history blame
3.3 kB
import torch
import torch.nn as nn
#from transformers.modeling_albert import AlbertPreTrainedModel, AlbertModel, AlbertConfig
from transformers.models.albert.modeling_albert import AlbertPreTrainedModel, AlbertModel, AlbertConfig
from torchcrf import CRF
from .module import IntentClassifier, SlotClassifier
class JointAlbert(AlbertPreTrainedModel):
def __init__(self, config, args, intent_label_lst, slot_label_lst):
super(JointAlbert, self).__init__(config)
self.args = args
self.num_intent_labels = len(intent_label_lst)
self.num_slot_labels = len(slot_label_lst)
self.albert = AlbertModel(config=config) # Load pretrained bert
self.intent_classifier = IntentClassifier(config.hidden_size, self.num_intent_labels, args.dropout_rate)
self.slot_classifier = SlotClassifier(config.hidden_size, self.num_slot_labels, args.dropout_rate)
if args.use_crf:
self.crf = CRF(num_tags=self.num_slot_labels, batch_first=True)
def forward(self, input_ids, attention_mask, token_type_ids, intent_label_ids, slot_labels_ids):
outputs = self.albert(input_ids, attention_mask=attention_mask,
token_type_ids=token_type_ids) # sequence_output, pooled_output, (hidden_states), (attentions)
sequence_output = outputs[0]
pooled_output = outputs[1] # [CLS]
intent_logits = self.intent_classifier(pooled_output)
slot_logits = self.slot_classifier(sequence_output)
total_loss = 0
# 1. Intent Softmax
if intent_label_ids is not None:
if self.num_intent_labels == 1:
intent_loss_fct = nn.MSELoss()
intent_loss = intent_loss_fct(intent_logits.view(-1), intent_label_ids.view(-1))
else:
intent_loss_fct = nn.CrossEntropyLoss()
intent_loss = intent_loss_fct(intent_logits.view(-1, self.num_intent_labels), intent_label_ids.view(-1))
total_loss += intent_loss
# 2. Slot Softmax
if slot_labels_ids is not None:
if self.args.use_crf:
slot_loss = self.crf(slot_logits, slot_labels_ids, mask=attention_mask.byte(), reduction='mean')
slot_loss = -1 * slot_loss # negative log-likelihood
else:
slot_loss_fct = nn.CrossEntropyLoss(ignore_index=self.args.ignore_index)
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = slot_logits.view(-1, self.num_slot_labels)[active_loss]
active_labels = slot_labels_ids.view(-1)[active_loss]
slot_loss = slot_loss_fct(active_logits, active_labels)
else:
slot_loss = slot_loss_fct(slot_logits.view(-1, self.num_slot_labels), slot_labels_ids.view(-1))
total_loss += self.args.slot_loss_coef * slot_loss
outputs = ((intent_logits, slot_logits),) + outputs[2:] # add hidden states and attention if they are here
outputs = (total_loss,) + outputs
return outputs # (loss), logits, (hidden_states), (attentions) # Logits is a tuple of intent and slot logits