import os import numpy as np import PIL.Image import gradio as gr import matplotlib.pyplot as plt import requests import io import random import os from PIL import Image, ImageDraw, ImageFont import pandas as pd from time import sleep from tqdm import tqdm import extcolors from gradio_client import Client import cv2 import numpy as np import glob import pathlib from skimage import io as skio from pyxelate import Pyx, Pal from uuid import uuid1 API_TOKEN = os.environ.get("HF_READ_TOKEN") DEFAULT_PROMPT = "Superman go to Istanbul" #DEFAULT_ROLE = "Superman" #DEFAULT_BOOK_COVER = "book_cover_dir/Blank.png" def tensor_to_image(tensor): tensor = tensor*255 tensor = np.array(tensor, dtype=np.uint8) if np.ndim(tensor)>3: assert tensor.shape[0] == 1 tensor = tensor[0] return PIL.Image.fromarray(tensor) list_models = [ "Pixel-Art-XL", "SD-1.5", "OpenJourney-V4", "Anything-V4", "Disney-Pixar-Cartoon", "Dalle-3-XL", ] def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7, seed=None, API_TOKEN = API_TOKEN): if current_model == "SD-1.5": API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5" elif current_model == "OpenJourney-V4": API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney" elif current_model == "Anything-V4": API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0" elif current_model == "Disney-Pixar-Cartoon": API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon" elif current_model == "Pixel-Art-XL": API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl" elif current_model == "Dalle-3-XL": API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl" #API_TOKEN = os.environ.get("HF_READ_TOKEN") headers = {"Authorization": f"Bearer {API_TOKEN}"} if type(prompt) != type(""): prompt = DEFAULT_PROMPT if image_style == "None style": payload = { "inputs": prompt + ", 8k", "is_negative": is_negative, "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed is not None else random.randint(-1, 2147483647) } elif image_style == "Cinematic": payload = { "inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko", "is_negative": is_negative + ", abstract, cartoon, stylized", "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed is not None else random.randint(-1, 2147483647) } elif image_style == "Digital Art": payload = { "inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star", "is_negative": is_negative + ", sharp , modern , bright", "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed is not None else random.randint(-1, 2147483647) } elif image_style == "Portrait": payload = { "inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)", "is_negative": is_negative, "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed is not None else random.randint(-1, 2147483647) } image_bytes = requests.post(API_URL, headers=headers, json=payload).content image = Image.open(io.BytesIO(image_bytes)) return image from huggingface_hub import InferenceClient import gradio as gr import pandas as pd import numpy as np import os event_reasoning_df = pd.DataFrame( [['Use the following events as a background to answer questions related to the cause and effect of time.', 'Ok'], ['What are the necessary preconditions for the next event?:X had a big meal.', 'X placed an order'], ['What could happen after the next event?:X had a big meal.', 'X becomes fat'], ['What is the motivation for the next event?:X had a big meal.', 'X is hungry'], ['What are your feelings after the following event?:X had a big meal.', "X tastes good"], ['What are the necessary preconditions for the next event?:X met his favorite star.', 'X bought a ticket'], ['What could happen after the next event?:X met his favorite star.', 'X is motivated'], ['What is the motivation for the next event?:X met his favorite star.', 'X wants to have some entertainment'], ['What are your feelings after the following event?:X met his favorite star.', "X is in a happy mood"], ['What are the necessary preconditions for the next event?: X to cheat', 'X has evil intentions'], ['What could happen after the next event?:X to cheat', 'X is accused'], ['What is the motivation for the next event?:X to cheat', 'X wants to get something for nothing'], ['What are your feelings after the following event?:X to cheat', "X is starving and freezing in prison"], ['What could happen after the next event?:X go to Istanbul', ''], ], columns = ["User", "Assistant"] ) Mistral_7B_client = InferenceClient( "mistralai/Mistral-7B-Instruct-v0.1" ) NEED_PREFIX = 'What are the necessary preconditions for the next event?' EFFECT_PREFIX = 'What could happen after the next event?' INTENT_PREFIX = 'What is the motivation for the next event?' REACT_PREFIX = 'What are your feelings after the following event?' def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, history, client = Mistral_7B_client, temperature=0.7, max_new_tokens=256, top_p=0.95, repetition_penalty=1.1, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output l = [['Confucius', 'X read a book'], ['Superman', 'X go to Istanbul'], ['Monk Xuanzang', 'X went to the West to obtain Buddhist scriptures'], ['Mickey Mouse', 'X attends a party'], ['Napoleon', 'X riding a horse'], ['The Pope', 'X is being crowned'], ['Harry Potter', 'X defeated Voldemort'], ['Minions', 'X join the interstellar war'], ['Augustus Octavian', 'X served as tribune'], ['The Eastern Roman Emperor', 'X defeats Mongol Invaders']] l = [ ('Extract entity from following sentence.', 'Ok') ] + pd.DataFrame(l, columns = ["Role", "Event"]).apply( lambda x: (x["Event"].replace("X", x["Role"]), "{} : {}".format(x["Role"], x["Event"])), axis = 1 ).values.tolist() #list(generate("The forbidden city build by emp from ming.", history = l, max_new_tokens = 2048))[-1] #' The Forbidden City : X build by Emp from Ming' hist = event_reasoning_df.iloc[:-1, :].apply( lambda x: (x["User"], x["Assistant"]), axis = 1 ) def produce_4_event(event_fact, hist = hist): NEED_PREFIX_prompt = "{}:{}".format(NEED_PREFIX, event_fact) EFFECT_PREFIX_prompt = "{}:{}".format(EFFECT_PREFIX, event_fact) INTENT_PREFIX_prompt = "{}:{}".format(INTENT_PREFIX, event_fact) REACT_PREFIX_prompt = "{}:{}".format(REACT_PREFIX, event_fact) NEED_PREFIX_output = list(generate(NEED_PREFIX_prompt, history = hist, max_new_tokens = 2048))[-1] EFFECT_PREFIX_output = list(generate(EFFECT_PREFIX_prompt, history = hist, max_new_tokens = 2048))[-1] INTENT_PREFIX_output = list(generate(INTENT_PREFIX_prompt, history = hist, max_new_tokens = 2048))[-1] REACT_PREFIX_output = list(generate(REACT_PREFIX_prompt, history = hist, max_new_tokens = 2048))[-1] NEED_PREFIX_output, EFFECT_PREFIX_output, INTENT_PREFIX_output, REACT_PREFIX_output = map(lambda x: x.replace("", ""), [NEED_PREFIX_output, EFFECT_PREFIX_output, INTENT_PREFIX_output, REACT_PREFIX_output]) return { NEED_PREFIX: NEED_PREFIX_output, EFFECT_PREFIX: EFFECT_PREFIX_output, INTENT_PREFIX: INTENT_PREFIX_output, REACT_PREFIX: REACT_PREFIX_output, } def transform_4_event_as_sd_prompts(event_fact ,event_reasoning_dict, role_name = "superman"): req = {} for k, v in event_reasoning_dict.items(): if type(role_name) == type("") and role_name.strip(): v_ = v.replace("X", role_name) else: v_ = v req[k] = list(generate("Transform this as a prompt in stable diffusion: {}".\ format(v_), history = [], max_new_tokens = 2048))[-1].replace("", "") event_fact_ = event_fact.replace("X", role_name) req["EVENT_FACT"] = list(generate("Transform this as a prompt in stable diffusion: {}".\ format(event_fact_), history = [], max_new_tokens = 2048))[-1].replace("", "") req_list = [ req[INTENT_PREFIX], req[NEED_PREFIX], req["EVENT_FACT"], req[REACT_PREFIX], req[EFFECT_PREFIX] ] caption_list = [ event_reasoning_dict[INTENT_PREFIX], event_reasoning_dict[NEED_PREFIX], event_fact, event_reasoning_dict[REACT_PREFIX], event_reasoning_dict[EFFECT_PREFIX] ] caption_list = list(map(lambda x: x.replace("X", role_name), caption_list)) return caption_list ,req_list def batch_as_list(input_, batch_size = 3): req = [] for ele in input_: if not req or len(req[-1]) >= batch_size: req.append([ele]) else: req[-1].append(ele) return req def add_margin(pil_img, top, right, bottom, left, color): width, height = pil_img.size new_width = width + right + left new_height = height + top + bottom result = Image.new(pil_img.mode, (new_width, new_height), color) result.paste(pil_img, (left, top)) return result def add_caption_on_image(input_image, caption, marg_ratio = 0.15, row_token_num = 6): from uuid import uuid1 assert hasattr(input_image, "save") max_image_size = max(input_image.size) marg_size = int(marg_ratio * max_image_size) colors, pixel_count = extcolors.extract_from_image(input_image) input_image = add_margin(input_image, marg_size, 0, 0, marg_size, colors[0][0]) font = ImageFont.truetype("DejaVuSerif-Italic.ttf" ,int(marg_size / 4)) caption_token_list = list(map(lambda x: x.strip() ,caption.split(" "))) caption_list = list(map(" ".join ,batch_as_list(caption_token_list, row_token_num))) draw = ImageDraw.Draw(input_image) for line_num ,line_caption in enumerate(caption_list): position = ( int(marg_size / 4) * (line_num + 1) * 1.1 , (int(marg_size / 4) * ( (line_num + 1) * 1.1 ))) draw.text(position, line_caption, fill="black", font = font) return input_image def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height))) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width))) return result def generate_video(images, video_name = 'ppt.avi'): import cv2 from uuid import uuid1 im_names = [] for im in images: name = "{}.png".format(uuid1()) im.save(name) im_names.append(name) frame = cv2.imread(im_names[0]) # setting the frame width, height width # the width, height of first image height, width, layers = frame.shape video = cv2.VideoWriter(video_name, 0, 1, (width, height)) # Appending the images to the video one by one for name in im_names: video.write(cv2.imread(name)) os.remove(name) # Deallocating memories taken for window creation #cv2.destroyAllWindows() video.release() # releasing the video generated def make_video_from_image_list(image_list, video_name = "ppt.avi"): if os.path.exists(video_name): os.remove(video_name) assert all(map(lambda x: hasattr(x, "save"), image_list)) max_size = list(map(max ,zip(*map(lambda x: x.size, image_list)))) max_size = max(max_size) image_list = list(map(lambda x: expand2square(x, extcolors.extract_from_image(x)[0][0][0] ).resize((max_size, max_size)), image_list)) generate_video(image_list, video_name = video_name) return video_name ''' def style_transfer_func(content_img, style_img): assert hasattr(content_img, "save") assert hasattr(style_img, "save") colors, pixel_count = extcolors.extract_from_image(style_img) if colors and colors[0][0] == (255, 255, 255) and (colors[0][1] / sum(map(lambda t2: t2[1] ,colors)) > 0.95): return content_img content_image_input = np.asarray(content_img) style_image_input = np.asarray(style_img) out = perform_neural_transfer(content_image_input, style_image_input) assert hasattr(out, "save") return out ''' def style_transfer_func(content_img, downsample, palette, depth, upscale): assert hasattr(content_img, "save") #image = io.imread(image.name) path = "{}.png".format(uuid1()) #Image.fromarray(image).save(path) content_img.save(path) image = skio.imread(path) os.remove(path) downsample_by = int(downsample) # new image will be 1/14th of the original in size palette = int(palette) # find 7 colors # 1) Instantiate Pyx transformer pyx = Pyx(factor=downsample_by, palette=palette,depth=int(depth),upscale = int(upscale)) # 2) fit an image, allow Pyxelate to learn the color palette pyx.fit(image) # 3) transform image to pixel art using the learned color palette new_image = pyx.transform(image) # save new image with 'skimage.io.imsave()' skio.imsave(path, new_image) out = Image.open(path) os.remove(path) return out def gen_images_from_event_fact(current_model, event_fact, role_name, downsample = 0, palette = 0, depth = 0, upscale = 0, ): event_reasoning_dict = produce_4_event(event_fact) caption_list ,event_reasoning_sd_list = transform_4_event_as_sd_prompts(event_fact , event_reasoning_dict, role_name = role_name ) img_list = [] for prompt in tqdm(event_reasoning_sd_list): im = generate_txt2img(current_model, prompt, is_negative=False, image_style="None style") img_list.append(im) sleep(2) img_list = list(filter(lambda x: hasattr(x, "save"), img_list)) ''' if style_pic is not None and hasattr(style_pic, "size"): style_pic = Image.fromarray(style_pic.astype(np.uint8)) ''' if downsample is not None and downsample > 0: print("perform styling.....") img_list_ = [] for x in tqdm(img_list): img_list_.append(style_transfer_func(x, downsample, palette, depth, upscale)) img_list = img_list_ img_list = list(map(lambda t2: add_caption_on_image(t2[0], t2[1]) ,zip(*[img_list, caption_list]))) img_mid = img_list[2] img_list_reordered = [img_mid] for ele in img_list: if ele not in img_list_reordered: img_list_reordered.append(ele) video_path = make_video_from_image_list(img_list_reordered) return video_path def gen_images_from_prompt(current_model, prompt = DEFAULT_PROMPT, downsample = 0, palette = 0, depth = 0, upscale = 0, ): #### event_fact = DEFAULT_PROMPT, role_name = DEFAULT_ROLE #list(generate("The forbidden city build by emp from ming.", history = l, max_new_tokens = 2048))[-1] #' The Forbidden City : X build by Emp from Ming' out = list(generate(prompt, history = l, max_new_tokens = 2048))[-1] role_name, event_fact = map(lambda x: x.replace("", "").strip() ,out.split(":")) video_path = gen_images_from_event_fact(current_model, event_fact, role_name, downsample, palette, depth, upscale, ) return video_path ''' def image_click(images, evt: gr.SelectData, ): img_selected = images[evt.index][0]["name"] return img_selected def get_book_covers(): covers = pd.Series( list(pathlib.Path("book_cover_dir").rglob("*.jpg")) + \ list(pathlib.Path("book_cover_dir").rglob("*.png")) + \ list(pathlib.Path("book_cover_dir").rglob("*.jpeg")) ).map(str).map(lambda x: np.nan if x.split("/")[-1].startswith("_") else x).dropna().map( lambda x: (x, "".join(x.split(".")[:-1]).split("/")[-1]) ).values.tolist() covers = sorted(covers, key = lambda t2: int(DEFAULT_BOOK_COVER in t2[0]), reverse = True) return covers ''' with gr.Blocks(css=".caption-label {display:none}") as demo: favicon = '' gr.Markdown( f"""

🧱 Pixel Story Teller

""" ) with gr.Row(): ''' with gr.Column(elem_id="prompt-container"): current_model = gr.Dropdown(label="Current Model", choices=list_models, value="Pixel-Art-XL") style_reference_input_gallery = gr.Gallery(get_book_covers(), height = 768 + (768 - 512) + 64 + 32, label = "StoryBook Cover (click to use)", object_fit = "contain" ) with gr.Column(elem_id="prompt-container"): style_reference_input_image = gr.Image( label = "StoryBook Cover (you can upload yourself or click from left gallery)", value = DEFAULT_BOOK_COVER, interactive = True, ) ''' with gr.Column(elem_id="prompt-container"): with gr.Row(): ''' role_name = gr.Textbox(label="Role (X)", placeholder=DEFAULT_ROLE, lines=1, elem_id="prompt-text-input", value = DEFAULT_ROLE, info = "You should set the Role (X) with some famous man (like: Confucius Superman)" ) ''' text_prompt = gr.Textbox(label="Event Prompt", placeholder=DEFAULT_PROMPT, lines=1, elem_id="prompt-text-input", value = DEFAULT_PROMPT, info = "You should set the prompt in format 'Someone do something'", ) with gr.Row(): current_model = gr.Dropdown(label="Current Model", choices=list_models, value="Pixel-Art-XL") downsample = gr.Number(value=2, label="downsample by") palette = gr.Number(value=10, label="palette") depth = gr.Number(value=1, label="depth") upscale = gr.Number(value=2, label="upscale") with gr.Row(): text_button = gr.Button("Generate", variant='primary', elem_id="gen-button") with gr.Column(): gr.Examples( [ ["OpenJourney-V4", "Augustus Octavian" + " served as tribune"], ["Pixel-Art-XL", "Confucius" + " read a book"], ["Pixel-Art-XL", "Superman" + " go to Istanbul"], ["SD-1.5", "Monk Xuanzang" + " went to the West to obtain Buddhist scriptures"], ["SD-1.5", "Mickey Mouse" + " attends a party"], ["SD-1.5", "Napoleon" + " riding a horse"], ["SD-1.5", "The Pope" + " is being crowned"], ["SD-1.5", "The Eastern Roman Emperor" + " defeats Mongol Invaders"], ], inputs = [current_model, text_prompt], label = "Example collection" ) ''' gr.Examples( [ ["Disney-Pixar-Cartoon", "Harry Potter" + " defeated Voldemort"], ["Disney-Pixar-Cartoon", "Minions" + " join the interstellar war"], ["OpenJourney-V4", "Augustus Octavian" + " served as tribune"], ["SD-1.5", "The Eastern Roman Emperor" + " defeats Mongol Invaders"], ], inputs = [current_model, text_prompt], label = "Example collection 2" ) ''' with gr.Column(): video_output = gr.Video(label = "Story Video", elem_id="gallery", height = 768,) ''' style_reference_input_gallery.select( image_click, style_reference_input_gallery, style_reference_input_image ) ''' text_button.click(gen_images_from_prompt, inputs=[current_model, text_prompt, downsample, palette, depth, upscale ], outputs=video_output) demo.launch(show_api=False)