File size: 12,206 Bytes
dfd2e65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import argparse
from dataclasses import (
asdict,
dataclass,
)
import functools
import random
from textwrap import dedent, indent
import json
from pathlib import Path
# from toolz import curry
from typing import Dict, List, Optional, Sequence, Tuple, Union
import toml
import voluptuous
from voluptuous import Any, ExactSequence, MultipleInvalid, Object, Schema
from .image_video_dataset import DatasetGroup, ImageDataset, VideoDataset
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
@dataclass
class BaseDatasetParams:
resolution: Tuple[int, int] = (960, 544)
enable_bucket: bool = False
bucket_no_upscale: bool = False
caption_extension: Optional[str] = None
batch_size: int = 1
cache_directory: Optional[str] = None
debug_dataset: bool = False
@dataclass
class ImageDatasetParams(BaseDatasetParams):
image_directory: Optional[str] = None
image_jsonl_file: Optional[str] = None
@dataclass
class VideoDatasetParams(BaseDatasetParams):
video_directory: Optional[str] = None
video_jsonl_file: Optional[str] = None
target_frames: Sequence[int] = (1,)
frame_extraction: Optional[str] = "head"
frame_stride: Optional[int] = 1
frame_sample: Optional[int] = 1
@dataclass
class DatasetBlueprint:
is_image_dataset: bool
params: Union[ImageDatasetParams, VideoDatasetParams]
@dataclass
class DatasetGroupBlueprint:
datasets: Sequence[DatasetBlueprint]
@dataclass
class Blueprint:
dataset_group: DatasetGroupBlueprint
class ConfigSanitizer:
# @curry
@staticmethod
def __validate_and_convert_twodim(klass, value: Sequence) -> Tuple:
Schema(ExactSequence([klass, klass]))(value)
return tuple(value)
# @curry
@staticmethod
def __validate_and_convert_scalar_or_twodim(klass, value: Union[float, Sequence]) -> Tuple:
Schema(Any(klass, ExactSequence([klass, klass])))(value)
try:
Schema(klass)(value)
return (value, value)
except:
return ConfigSanitizer.__validate_and_convert_twodim(klass, value)
# datasets schema
DATASET_ASCENDABLE_SCHEMA = {
"caption_extension": str,
"batch_size": int,
"resolution": functools.partial(__validate_and_convert_scalar_or_twodim.__func__, int),
"enable_bucket": bool,
"bucket_no_upscale": bool,
}
IMAGE_DATASET_DISTINCT_SCHEMA = {
"image_directory": str,
"image_jsonl_file": str,
"cache_directory": str,
}
VIDEO_DATASET_DISTINCT_SCHEMA = {
"video_directory": str,
"video_jsonl_file": str,
"target_frames": [int],
"frame_extraction": str,
"frame_stride": int,
"frame_sample": int,
"cache_directory": str,
}
# options handled by argparse but not handled by user config
ARGPARSE_SPECIFIC_SCHEMA = {
"debug_dataset": bool,
}
def __init__(self) -> None:
self.image_dataset_schema = self.__merge_dict(
self.DATASET_ASCENDABLE_SCHEMA,
self.IMAGE_DATASET_DISTINCT_SCHEMA,
)
self.video_dataset_schema = self.__merge_dict(
self.DATASET_ASCENDABLE_SCHEMA,
self.VIDEO_DATASET_DISTINCT_SCHEMA,
)
def validate_flex_dataset(dataset_config: dict):
if "target_frames" in dataset_config:
return Schema(self.video_dataset_schema)(dataset_config)
else:
return Schema(self.image_dataset_schema)(dataset_config)
self.dataset_schema = validate_flex_dataset
self.general_schema = self.__merge_dict(
self.DATASET_ASCENDABLE_SCHEMA,
)
self.user_config_validator = Schema(
{
"general": self.general_schema,
"datasets": [self.dataset_schema],
}
)
self.argparse_schema = self.__merge_dict(
self.ARGPARSE_SPECIFIC_SCHEMA,
)
self.argparse_config_validator = Schema(Object(self.argparse_schema), extra=voluptuous.ALLOW_EXTRA)
def sanitize_user_config(self, user_config: dict) -> dict:
try:
return self.user_config_validator(user_config)
except MultipleInvalid:
# TODO: clarify the error message
logger.error("Invalid user config / ユーザ設定の形式が正しくないようです")
raise
# NOTE: In nature, argument parser result is not needed to be sanitize
# However this will help us to detect program bug
def sanitize_argparse_namespace(self, argparse_namespace: argparse.Namespace) -> argparse.Namespace:
try:
return self.argparse_config_validator(argparse_namespace)
except MultipleInvalid:
# XXX: this should be a bug
logger.error(
"Invalid cmdline parsed arguments. This should be a bug. / コマンドラインのパース結果が正しくないようです。プログラムのバグの可能性が高いです。"
)
raise
# NOTE: value would be overwritten by latter dict if there is already the same key
@staticmethod
def __merge_dict(*dict_list: dict) -> dict:
merged = {}
for schema in dict_list:
# merged |= schema
for k, v in schema.items():
merged[k] = v
return merged
class BlueprintGenerator:
BLUEPRINT_PARAM_NAME_TO_CONFIG_OPTNAME = {}
def __init__(self, sanitizer: ConfigSanitizer):
self.sanitizer = sanitizer
# runtime_params is for parameters which is only configurable on runtime, such as tokenizer
def generate(self, user_config: dict, argparse_namespace: argparse.Namespace, **runtime_params) -> Blueprint:
sanitized_user_config = self.sanitizer.sanitize_user_config(user_config)
sanitized_argparse_namespace = self.sanitizer.sanitize_argparse_namespace(argparse_namespace)
argparse_config = {k: v for k, v in vars(sanitized_argparse_namespace).items() if v is not None}
general_config = sanitized_user_config.get("general", {})
dataset_blueprints = []
for dataset_config in sanitized_user_config.get("datasets", []):
is_image_dataset = "target_frames" not in dataset_config
if is_image_dataset:
dataset_params_klass = ImageDatasetParams
else:
dataset_params_klass = VideoDatasetParams
params = self.generate_params_by_fallbacks(
dataset_params_klass, [dataset_config, general_config, argparse_config, runtime_params]
)
dataset_blueprints.append(DatasetBlueprint(is_image_dataset, params))
dataset_group_blueprint = DatasetGroupBlueprint(dataset_blueprints)
return Blueprint(dataset_group_blueprint)
@staticmethod
def generate_params_by_fallbacks(param_klass, fallbacks: Sequence[dict]):
name_map = BlueprintGenerator.BLUEPRINT_PARAM_NAME_TO_CONFIG_OPTNAME
search_value = BlueprintGenerator.search_value
default_params = asdict(param_klass())
param_names = default_params.keys()
params = {name: search_value(name_map.get(name, name), fallbacks, default_params.get(name)) for name in param_names}
return param_klass(**params)
@staticmethod
def search_value(key: str, fallbacks: Sequence[dict], default_value=None):
for cand in fallbacks:
value = cand.get(key)
if value is not None:
return value
return default_value
# if training is True, it will return a dataset group for training, otherwise for caching
def generate_dataset_group_by_blueprint(dataset_group_blueprint: DatasetGroupBlueprint, training: bool = False) -> DatasetGroup:
datasets: List[Union[ImageDataset, VideoDataset]] = []
for dataset_blueprint in dataset_group_blueprint.datasets:
if dataset_blueprint.is_image_dataset:
dataset_klass = ImageDataset
else:
dataset_klass = VideoDataset
dataset = dataset_klass(**asdict(dataset_blueprint.params))
datasets.append(dataset)
# print info
info = ""
for i, dataset in enumerate(datasets):
is_image_dataset = isinstance(dataset, ImageDataset)
info += dedent(
f"""\
[Dataset {i}]
is_image_dataset: {is_image_dataset}
resolution: {dataset.resolution}
batch_size: {dataset.batch_size}
caption_extension: "{dataset.caption_extension}"
enable_bucket: {dataset.enable_bucket}
bucket_no_upscale: {dataset.bucket_no_upscale}
cache_directory: "{dataset.cache_directory}"
debug_dataset: {dataset.debug_dataset}
"""
)
if is_image_dataset:
info += indent(
dedent(
f"""\
image_directory: "{dataset.image_directory}"
image_jsonl_file: "{dataset.image_jsonl_file}"
\n"""
),
" ",
)
else:
info += indent(
dedent(
f"""\
video_directory: "{dataset.video_directory}"
video_jsonl_file: "{dataset.video_jsonl_file}"
target_frames: {dataset.target_frames}
frame_extraction: {dataset.frame_extraction}
frame_stride: {dataset.frame_stride}
frame_sample: {dataset.frame_sample}
\n"""
),
" ",
)
logger.info(f"{info}")
# make buckets first because it determines the length of dataset
# and set the same seed for all datasets
seed = random.randint(0, 2**31) # actual seed is seed + epoch_no
for i, dataset in enumerate(datasets):
# logger.info(f"[Dataset {i}]")
dataset.set_seed(seed)
if training:
dataset.prepare_for_training()
return DatasetGroup(datasets)
def load_user_config(file: str) -> dict:
file: Path = Path(file)
if not file.is_file():
raise ValueError(f"file not found / ファイルが見つかりません: {file}")
if file.name.lower().endswith(".json"):
try:
with open(file, "r") as f:
config = json.load(f)
except Exception:
logger.error(
f"Error on parsing JSON config file. Please check the format. / JSON 形式の設定ファイルの読み込みに失敗しました。文法が正しいか確認してください。: {file}"
)
raise
elif file.name.lower().endswith(".toml"):
try:
config = toml.load(file)
except Exception:
logger.error(
f"Error on parsing TOML config file. Please check the format. / TOML 形式の設定ファイルの読み込みに失敗しました。文法が正しいか確認してください。: {file}"
)
raise
else:
raise ValueError(f"not supported config file format / 対応していない設定ファイルの形式です: {file}")
return config
# for config test
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("dataset_config")
config_args, remain = parser.parse_known_args()
parser = argparse.ArgumentParser()
parser.add_argument("--debug_dataset", action="store_true")
argparse_namespace = parser.parse_args(remain)
logger.info("[argparse_namespace]")
logger.info(f"{vars(argparse_namespace)}")
user_config = load_user_config(config_args.dataset_config)
logger.info("")
logger.info("[user_config]")
logger.info(f"{user_config}")
sanitizer = ConfigSanitizer()
sanitized_user_config = sanitizer.sanitize_user_config(user_config)
logger.info("")
logger.info("[sanitized_user_config]")
logger.info(f"{sanitized_user_config}")
blueprint = BlueprintGenerator(sanitizer).generate(user_config, argparse_namespace)
logger.info("")
logger.info("[blueprint]")
logger.info(f"{blueprint}")
dataset_group = generate_dataset_group_by_blueprint(blueprint.dataset_group)
|