|
import os |
|
import torch |
|
from collections import OrderedDict |
|
from abc import ABC, abstractmethod |
|
from . import networks |
|
import numpy as np |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
|
|
class BaseModel(ABC): |
|
"""This class is an abstract base class (ABC) for models. |
|
To create a subclass, you need to implement the following five functions: |
|
-- <__init__>: initialize the class; first call BaseModel.__init__(self, opt). |
|
-- <set_input>: unpack data from dataset and apply preprocessing. |
|
-- <forward>: produce intermediate results. |
|
-- <optimize_parameters>: calculate losses, gradients, and update network weights. |
|
-- <modify_commandline_options>: (optionally) add model-specific options and set default options. |
|
""" |
|
|
|
def __init__(self, opt): |
|
"""Initialize the BaseModel class. |
|
|
|
Parameters: |
|
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions |
|
|
|
When creating your custom class, you need to implement your own initialization. |
|
In this fucntion, you should first call `BaseModel.__init__(self, opt)` |
|
Then, you need to define four lists: |
|
-- self.loss_names (str list): specify the training losses that you want to plot and save. |
|
-- self.model_names (str list): specify the images that you want to display and save. |
|
-- self.visual_names (str list): define networks used in our training. |
|
-- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. |
|
""" |
|
self.opt = opt |
|
self.gpu_ids = opt.gpu_ids |
|
self.isTrain = opt.isTrain |
|
self.iter = 0 |
|
self.last_iter = 0 |
|
self.device = torch.device('cuda:{}'.format( |
|
self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') |
|
|
|
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) |
|
try: |
|
os.mkdir(self.save_dir) |
|
except: |
|
pass |
|
|
|
if opt.preprocess != 'scale_width': |
|
torch.backends.cudnn.benchmark = True |
|
self.loss_names = [] |
|
self.model_names = [] |
|
self.visual_names = [] |
|
self.optimizers = [] |
|
self.image_paths = [] |
|
|
|
self.label_colours = np.random.randint(255, size=(100,3)) |
|
|
|
def save_suppixel(self,l_inds): |
|
im_target_rgb = np.array([self.label_colours[ c % 100 ] for c in l_inds]) |
|
b,h,w = l_inds.shape |
|
im_target_rgb = im_target_rgb.reshape(b,h,w,3).transpose(0,3,1,2)/127.5-1.0 |
|
return torch.from_numpy(im_target_rgb) |
|
|
|
@staticmethod |
|
def modify_commandline_options(parser, is_train): |
|
"""Add new model-specific options, and rewrite default values for existing options. |
|
|
|
Parameters: |
|
parser -- original option parser |
|
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. |
|
|
|
Returns: |
|
the modified parser. |
|
""" |
|
return parser |
|
|
|
@abstractmethod |
|
def set_input(self, input): |
|
"""Unpack input data from the dataloader and perform necessary pre-processing steps. |
|
|
|
Parameters: |
|
input (dict): includes the data itself and its metadata information. |
|
""" |
|
pass |
|
|
|
@abstractmethod |
|
def forward(self): |
|
"""Run forward pass; called by both functions <optimize_parameters> and <test>.""" |
|
pass |
|
|
|
def is_train(self): |
|
"""check if the current batch is good for training.""" |
|
return True |
|
|
|
@abstractmethod |
|
def optimize_parameters(self): |
|
"""Calculate losses, gradients, and update network weights; called in every training iteration""" |
|
pass |
|
|
|
def setup(self, opt): |
|
"""Load and print networks; create schedulers |
|
|
|
Parameters: |
|
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions |
|
""" |
|
if self.isTrain: |
|
self.schedulers = [networks.get_scheduler( |
|
optimizer, opt) for optimizer in self.optimizers] |
|
if not self.isTrain or opt.continue_train: |
|
self.load_networks(opt.epoch) |
|
self.print_networks(opt.verbose) |
|
|
|
def eval(self): |
|
"""Make models eval mode during test time""" |
|
for name in self.model_names: |
|
if isinstance(name, str): |
|
net = getattr(self, 'net' + name) |
|
net.eval() |
|
|
|
def test(self): |
|
"""Forward function used in test time. |
|
|
|
This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop |
|
It also calls <compute_visuals> to produce additional visualization results |
|
""" |
|
with torch.no_grad(): |
|
self.forward() |
|
self.compute_visuals() |
|
|
|
def compute_visuals(self): |
|
"""Calculate additional output images for visdom and HTML visualization""" |
|
pass |
|
|
|
def get_image_paths(self): |
|
""" Return image paths that are used to load current data""" |
|
return self.image_paths |
|
|
|
def update_learning_rate(self): |
|
"""Update learning rates for all the networks; called at the end of every epoch""" |
|
for scheduler in self.schedulers: |
|
scheduler.step() |
|
lr = self.optimizers[0].param_groups[0]['lr'] |
|
print('learning rate = %.7f' % lr) |
|
|
|
def get_current_visuals(self): |
|
"""Return visualization images. train.py will display these images with visdom, and save the images to a HTML""" |
|
visual_ret = OrderedDict() |
|
for name in self.visual_names: |
|
if isinstance(name, str): |
|
if 'Lab' in name: |
|
labimg = getattr(self, name).cpu() |
|
labimg[:,0,:,:]+=1 |
|
labimg[:,0,:,:]*=50 |
|
labimg[:,1:,:,:] *= 110 |
|
labimg = labimg.permute((0,2,3,1)) |
|
for i in range(labimg.shape[0]): |
|
labimg[i,:,:,:]=lab2rgb(labimg[i,:,:,:]) |
|
visual_ret[name] = (labimg.permute((0,3,1,2))*2-1.0).to(self.device) |
|
elif 'Fm' in name: |
|
visual_ret[name] = self.save_suppixel(getattr(self, name).cpu()).to(self.device) |
|
else: |
|
visual_ret[name] = getattr(self, name) |
|
return visual_ret |
|
|
|
def get_current_losses(self): |
|
"""Return traning losses / errors. train.py will print out these errors on console, and save them to a file""" |
|
errors_ret = OrderedDict() |
|
for name in self.loss_names: |
|
if isinstance(name, str): |
|
|
|
errors_ret[name] = float(getattr(self, 'loss_' + name)) |
|
return errors_ret |
|
|
|
def save_networks(self, epoch): |
|
"""Save all the networks to the disk. |
|
|
|
Parameters: |
|
epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) |
|
""" |
|
for name in self.model_names: |
|
if isinstance(name, str): |
|
save_filename = '%s_net_%s.pth' % (epoch, name) |
|
save_path = os.path.join(self.save_dir, save_filename) |
|
|
|
net = getattr(self, 'net' + name) |
|
|
|
if len(self.gpu_ids) > 0 and torch.cuda.is_available(): |
|
torch.save(net.state_dict(), save_path) |
|
|
|
else: |
|
torch.save(net.cpu().state_dict(), save_path) |
|
|
|
save_filename = '%s_net_opt.pth' % (epoch) |
|
save_path = os.path.join(self.save_dir, save_filename) |
|
save_dict = {'iter': str(self.iter // self.opt.print_freq * self.opt.print_freq)} |
|
for i, name in enumerate(self.optimizer_names): |
|
save_dict.update({name.lower(): self.optimizers[i].state_dict()}) |
|
torch.save(save_dict, save_path) |
|
|
|
|
|
def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0): |
|
"""Fix InstanceNorm checkpoints incompatibility (prior to 0.4)""" |
|
key = keys[i] |
|
if i + 1 == len(keys): |
|
if module.__class__.__name__.startswith('InstanceNorm') and \ |
|
(key == 'running_mean' or key == 'running_var'): |
|
if getattr(module, key) is None: |
|
state_dict.pop('.'.join(keys)) |
|
if module.__class__.__name__.startswith('InstanceNorm') and \ |
|
(key == 'num_batches_tracked'): |
|
state_dict.pop('.'.join(keys)) |
|
else: |
|
self.__patch_instance_norm_state_dict( |
|
state_dict, getattr(module, key), keys, i + 1) |
|
|
|
def load_networks(self, epoch): |
|
"""Load all the networks from the disk. |
|
|
|
Parameters: |
|
epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) |
|
""" |
|
for name in self.model_names: |
|
if isinstance(name, str): |
|
load_filename = '%s_net_%s.pth' % (epoch, name) |
|
load_path = os.path.join(self.save_dir, load_filename) |
|
net = getattr(self, 'net' + name) |
|
|
|
if isinstance(net, DDP): |
|
net = net.module |
|
|
|
print('loading the model from %s' % load_path) |
|
|
|
|
|
state_dict = torch.load( |
|
load_path, map_location=lambda storage, loc: storage.cuda()) |
|
if hasattr(state_dict, '_metadata'): |
|
del state_dict._metadata |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
net.load_state_dict(state_dict) |
|
del state_dict |
|
|
|
def print_networks(self, verbose): |
|
"""Print the total number of parameters in the network and (if verbose) network architecture |
|
|
|
Parameters: |
|
verbose (bool) -- if verbose: print the network architecture |
|
""" |
|
print('---------- Networks initialized -------------') |
|
for name in self.model_names: |
|
if isinstance(name, str): |
|
net = getattr(self, 'net' + name) |
|
num_params = 0 |
|
for param in net.parameters(): |
|
num_params += param.numel() |
|
if verbose: |
|
print(net) |
|
print('[Network %s] Total number of parameters : %.3f M' % |
|
(name, num_params / 1e6)) |
|
print('-----------------------------------------------') |
|
|
|
def set_requires_grad(self, nets, requires_grad=False): |
|
"""Set requires_grad=False for all the networks to avoid unnecessary computations |
|
Parameters: |
|
nets (network list) -- a list of networks |
|
requires_grad (bool) -- whether the networks require gradients or not |
|
""" |
|
if not isinstance(nets, list): |
|
nets = [nets] |
|
for net in nets: |
|
if net is not None: |
|
for param in net.parameters(): |
|
param.requires_grad = requires_grad |
|
|