|
"""This module implements an abstract base class (ABC) 'BaseDataset' for datasets. |
|
|
|
It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses. |
|
""" |
|
import random |
|
import numpy as np |
|
import torch.utils.data as data |
|
from PIL import Image, ImageOps |
|
import torchvision.transforms as transforms |
|
from abc import ABC, abstractmethod |
|
|
|
|
|
class BaseDataset(data.Dataset, ABC): |
|
"""This class is an abstract base class (ABC) for datasets. |
|
|
|
To create a subclass, you need to implement the following four functions: |
|
-- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). |
|
-- <__len__>: return the size of dataset. |
|
-- <__getitem__>: get a data point. |
|
-- <modify_commandline_options>: (optionally) add dataset-specific options and set default options. |
|
""" |
|
|
|
def __init__(self, opt): |
|
"""Initialize the class; save the options in the class |
|
|
|
Parameters: |
|
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions |
|
""" |
|
self.opt = opt |
|
self.root = opt.dataroot |
|
|
|
@staticmethod |
|
def modify_commandline_options(parser, is_train): |
|
"""Add new dataset-specific options, and rewrite default values for existing options. |
|
|
|
Parameters: |
|
parser -- original option parser |
|
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. |
|
|
|
Returns: |
|
the modified parser. |
|
""" |
|
return parser |
|
|
|
@abstractmethod |
|
def __len__(self): |
|
"""Return the total number of images in the dataset.""" |
|
return 0 |
|
|
|
@abstractmethod |
|
def __getitem__(self, index): |
|
"""Return a data point and its metadata information. |
|
|
|
Parameters: |
|
index - - a random integer for data indexing |
|
|
|
Returns: |
|
a dictionary of data with their names. It ususally contains the data itself and its metadata information. |
|
""" |
|
pass |
|
|
|
|
|
def get_params(opt, size): |
|
w, h = size |
|
new_h = h |
|
new_w = w |
|
crop = 0 |
|
if opt.preprocess == 'resize_and_crop': |
|
new_h = new_w = opt.load_size |
|
elif opt.preprocess == 'scale_width_and_crop': |
|
new_w = opt.load_size |
|
new_h = opt.load_size * h // w |
|
|
|
|
|
|
|
|
|
x = random.randint(crop, np.maximum(0, new_w - opt.crop_size-crop)) |
|
y = random.randint(crop, np.maximum(0, new_h - opt.crop_size-crop)) |
|
|
|
flip = random.random() > 0.5 |
|
|
|
return {'crop_pos': (x, y), 'flip': flip} |
|
|
|
|
|
def get_transform(opt, params=None, grayscale=False, method=Image.BICUBIC, convert=True): |
|
transform_list = [] |
|
if grayscale: |
|
transform_list.append(transforms.Grayscale(1)) |
|
if 'resize' in opt.preprocess: |
|
osize = [opt.load_size, opt.load_size] |
|
transform_list.append(transforms.Resize(osize, method)) |
|
elif 'scale_width' in opt.preprocess: |
|
transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, method))) |
|
|
|
if 'crop' in opt.preprocess: |
|
if params is None: |
|
|
|
transform_list.append(transforms.CenterCrop(opt.crop_size)) |
|
else: |
|
transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.crop_size))) |
|
|
|
if opt.preprocess == 'none': |
|
transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base=2**8, method=method))) |
|
|
|
if not opt.no_flip: |
|
if params is None: |
|
transform_list.append(transforms.RandomHorizontalFlip()) |
|
elif params['flip']: |
|
transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip']))) |
|
|
|
|
|
if convert: |
|
transform_list += [transforms.ToTensor()] |
|
if grayscale: |
|
transform_list += [transforms.Normalize((0.5,), (0.5,))] |
|
else: |
|
transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] |
|
return transforms.Compose(transform_list) |
|
|
|
|
|
def __make_power_2(img, base, method=Image.BICUBIC): |
|
ow, oh = img.size |
|
h = int((oh+base-1) // base * base) |
|
w = int((ow+base-1) // base * base) |
|
if (h == oh) and (w == ow): |
|
return img |
|
|
|
__print_size_warning(ow, oh, w, h) |
|
return ImageOps.expand(img, (0, 0, w-ow, h-oh), fill=255) |
|
|
|
|
|
def __scale_width(img, target_width, method=Image.BICUBIC): |
|
ow, oh = img.size |
|
if (ow == target_width): |
|
return img |
|
w = target_width |
|
h = int(target_width * oh / ow) |
|
return img.resize((w, h), method) |
|
|
|
|
|
def __crop(img, pos, size): |
|
ow, oh = img.size |
|
x1, y1 = pos |
|
tw = th = size |
|
if (ow > tw or oh > th): |
|
return img.crop((x1, y1, x1 + tw, y1 + th)) |
|
return img |
|
|
|
|
|
def __flip(img, flip): |
|
if flip: |
|
return img.transpose(Image.FLIP_LEFT_RIGHT) |
|
return img |
|
|
|
|
|
def __print_size_warning(ow, oh, w, h): |
|
"""Print warning information about image size(only print once)""" |
|
if not hasattr(__print_size_warning, 'has_printed'): |
|
print("The image size needs to be a multiple of 4. " |
|
"The loaded image size was (%d, %d), so it was adjusted to " |
|
"(%d, %d). This adjustment will be done to all images " |
|
"whose sizes are not multiples of 4" % (ow, oh, w, h)) |
|
__print_size_warning.has_printed = True |
|
|
|
|