Spaces:
Sleeping
Sleeping
from transformers import DistilBertModel | |
import torch | |
class DistillBERTClass(torch.nn.Module): | |
def __init__(self): | |
super(DistillBERTClass, self).__init__() | |
self.l1 = DistilBertModel.from_pretrained("distilbert-base-uncased") | |
self.pre_classifier = torch.nn.Linear(768, 512) | |
self.dropout = torch.nn.Dropout(0.3) | |
self.classifier = torch.nn.Linear(512, 126) | |
def forward(self, input_ids, attention_mask): | |
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask) | |
hidden_state = output_1[0] | |
pooler = hidden_state[:, 0] | |
pooler = self.pre_classifier(pooler) | |
pooler = torch.nn.ReLU()(pooler) | |
pooler = self.dropout(pooler) | |
output = self.classifier(pooler) | |
return output |