# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import json import cv2 import numpy as np from ultralytics.solutions.solutions import BaseSolution from ultralytics.utils import LOGGER from ultralytics.utils.checks import check_requirements from ultralytics.utils.plotting import Annotator class ParkingPtsSelection: """ A class for selecting and managing parking zone points on images using a Tkinter-based UI. This class provides functionality to upload an image, select points to define parking zones, and save the selected points to a JSON file. It uses Tkinter for the graphical user interface. Attributes: tk (module): The Tkinter module for GUI operations. filedialog (module): Tkinter's filedialog module for file selection operations. messagebox (module): Tkinter's messagebox module for displaying message boxes. master (tk.Tk): The main Tkinter window. canvas (tk.Canvas): The canvas widget for displaying the image and drawing bounding boxes. image (PIL.Image.Image): The uploaded image. canvas_image (ImageTk.PhotoImage): The image displayed on the canvas. rg_data (List[List[Tuple[int, int]]]): List of bounding boxes, each defined by 4 points. current_box (List[Tuple[int, int]]): Temporary storage for the points of the current bounding box. imgw (int): Original width of the uploaded image. imgh (int): Original height of the uploaded image. canvas_max_width (int): Maximum width of the canvas. canvas_max_height (int): Maximum height of the canvas. Methods: initialize_properties: Initializes the necessary properties. upload_image: Uploads an image, resizes it to fit the canvas, and displays it. on_canvas_click: Handles mouse clicks to add points for bounding boxes. draw_box: Draws a bounding box on the canvas. remove_last_bounding_box: Removes the last bounding box and redraws the canvas. redraw_canvas: Redraws the canvas with the image and all bounding boxes. save_to_json: Saves the bounding boxes to a JSON file. Examples: >>> parking_selector = ParkingPtsSelection() >>> # Use the GUI to upload an image, select parking zones, and save the data """ def __init__(self): """Initializes the ParkingPtsSelection class, setting up UI and properties for parking zone point selection.""" check_requirements("tkinter") import tkinter as tk from tkinter import filedialog, messagebox self.tk, self.filedialog, self.messagebox = tk, filedialog, messagebox self.master = self.tk.Tk() # Reference to the main application window or parent widget self.master.title("Ultralytics Parking Zones Points Selector") self.master.resizable(False, False) self.canvas = self.tk.Canvas(self.master, bg="white") # Canvas widget for displaying images or graphics self.canvas.pack(side=self.tk.BOTTOM) self.image = None # Variable to store the loaded image self.canvas_image = None # Reference to the image displayed on the canvas self.canvas_max_width = None # Maximum allowed width for the canvas self.canvas_max_height = None # Maximum allowed height for the canvas self.rg_data = None # Data related to region or annotation management self.current_box = None # Stores the currently selected or active bounding box self.imgh = None # Height of the current image self.imgw = None # Width of the current image # Button frame with buttons button_frame = self.tk.Frame(self.master) button_frame.pack(side=self.tk.TOP) for text, cmd in [ ("Upload Image", self.upload_image), ("Remove Last BBox", self.remove_last_bounding_box), ("Save", self.save_to_json), ]: self.tk.Button(button_frame, text=text, command=cmd).pack(side=self.tk.LEFT) self.initialize_properties() self.master.mainloop() def initialize_properties(self): """Initialize properties for image, canvas, bounding boxes, and dimensions.""" self.image = self.canvas_image = None self.rg_data, self.current_box = [], [] self.imgw = self.imgh = 0 self.canvas_max_width, self.canvas_max_height = 1280, 720 def upload_image(self): """Uploads and displays an image on the canvas, resizing it to fit within specified dimensions.""" from PIL import Image, ImageTk # scope because ImageTk requires tkinter package self.image = Image.open(self.filedialog.askopenfilename(filetypes=[("Image Files", "*.png *.jpg *.jpeg")])) if not self.image: return self.imgw, self.imgh = self.image.size aspect_ratio = self.imgw / self.imgh canvas_width = ( min(self.canvas_max_width, self.imgw) if aspect_ratio > 1 else int(self.canvas_max_height * aspect_ratio) ) canvas_height = ( min(self.canvas_max_height, self.imgh) if aspect_ratio <= 1 else int(canvas_width / aspect_ratio) ) self.canvas.config(width=canvas_width, height=canvas_height) self.canvas_image = ImageTk.PhotoImage(self.image.resize((canvas_width, canvas_height))) self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image) self.canvas.bind("", self.on_canvas_click) self.rg_data.clear(), self.current_box.clear() def on_canvas_click(self, event): """Handles mouse clicks to add points for bounding boxes on the canvas.""" self.current_box.append((event.x, event.y)) self.canvas.create_oval(event.x - 3, event.y - 3, event.x + 3, event.y + 3, fill="red") if len(self.current_box) == 4: self.rg_data.append(self.current_box.copy()) self.draw_box(self.current_box) self.current_box.clear() def draw_box(self, box): """Draws a bounding box on the canvas using the provided coordinates.""" for i in range(4): self.canvas.create_line(box[i], box[(i + 1) % 4], fill="blue", width=2) def remove_last_bounding_box(self): """Removes the last bounding box from the list and redraws the canvas.""" if not self.rg_data: self.messagebox.showwarning("Warning", "No bounding boxes to remove.") return self.rg_data.pop() self.redraw_canvas() def redraw_canvas(self): """Redraws the canvas with the image and all bounding boxes.""" self.canvas.delete("all") self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image) for box in self.rg_data: self.draw_box(box) def save_to_json(self): """Saves the selected parking zone points to a JSON file with scaled coordinates.""" scale_w, scale_h = self.imgw / self.canvas.winfo_width(), self.imgh / self.canvas.winfo_height() data = [{"points": [(int(x * scale_w), int(y * scale_h)) for x, y in box]} for box in self.rg_data] from io import StringIO # Function level import, as it's only required to store coordinates, not every frame write_buffer = StringIO() json.dump(data, write_buffer, indent=4) with open("bounding_boxes.json", "w", encoding="utf-8") as f: f.write(write_buffer.getvalue()) self.messagebox.showinfo("Success", "Bounding boxes saved to bounding_boxes.json") class ParkingManagement(BaseSolution): """ Manages parking occupancy and availability using YOLO model for real-time monitoring and visualization. This class extends BaseSolution to provide functionality for parking lot management, including detection of occupied spaces, visualization of parking regions, and display of occupancy statistics. Attributes: json_file (str): Path to the JSON file containing parking region details. json (List[Dict]): Loaded JSON data containing parking region information. pr_info (Dict[str, int]): Dictionary storing parking information (Occupancy and Available spaces). arc (Tuple[int, int, int]): RGB color tuple for available region visualization. occ (Tuple[int, int, int]): RGB color tuple for occupied region visualization. dc (Tuple[int, int, int]): RGB color tuple for centroid visualization of detected objects. Methods: process_data: Processes model data for parking lot management and visualization. Examples: >>> from ultralytics.solutions import ParkingManagement >>> parking_manager = ParkingManagement(model="yolov8n.pt", json_file="parking_regions.json") >>> print(f"Occupied spaces: {parking_manager.pr_info['Occupancy']}") >>> print(f"Available spaces: {parking_manager.pr_info['Available']}") """ def __init__(self, **kwargs): """Initializes the parking management system with a YOLO model and visualization settings.""" super().__init__(**kwargs) self.json_file = self.CFG["json_file"] # Load JSON data if self.json_file is None: LOGGER.warning("❌ json_file argument missing. Parking region details required.") raise ValueError("❌ Json file path can not be empty") with open(self.json_file) as f: self.json = json.load(f) self.pr_info = {"Occupancy": 0, "Available": 0} # dictionary for parking information self.arc = (0, 0, 255) # available region color self.occ = (0, 255, 0) # occupied region color self.dc = (255, 0, 189) # centroid color for each box def process_data(self, im0): """ Processes the model data for parking lot management. This function analyzes the input image, extracts tracks, and determines the occupancy status of parking regions defined in the JSON file. It annotates the image with occupied and available parking spots, and updates the parking information. Args: im0 (np.ndarray): The input inference image. Examples: >>> parking_manager = ParkingManagement(json_file="parking_regions.json") >>> image = cv2.imread("parking_lot.jpg") >>> parking_manager.process_data(image) """ self.extract_tracks(im0) # extract tracks from im0 es, fs = len(self.json), 0 # empty slots, filled slots annotator = Annotator(im0, self.line_width) # init annotator for region in self.json: # Convert points to a NumPy array with the correct dtype and reshape properly pts_array = np.array(region["points"], dtype=np.int32).reshape((-1, 1, 2)) rg_occupied = False # occupied region initialization for box, cls in zip(self.boxes, self.clss): xc, yc = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2) dist = cv2.pointPolygonTest(pts_array, (xc, yc), False) if dist >= 0: # cv2.circle(im0, (xc, yc), radius=self.line_width * 4, color=self.dc, thickness=-1) annotator.display_objects_labels( im0, self.model.names[int(cls)], (104, 31, 17), (255, 255, 255), xc, yc, 10 ) rg_occupied = True break fs, es = (fs + 1, es - 1) if rg_occupied else (fs, es) # Plotting regions cv2.polylines(im0, [pts_array], isClosed=True, color=self.occ if rg_occupied else self.arc, thickness=2) self.pr_info["Occupancy"], self.pr_info["Available"] = fs, es annotator.display_analytics(im0, self.pr_info, (104, 31, 17), (255, 255, 255), 10) self.display_output(im0) # display output with base class function return im0 # return output image for more usage