# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license # Ultralytics YOLO11-seg instance segmentation model with P3/8 - P5/32 outputs # Model docs: https://docs.ultralytics.com/models/yolo11 # Task docs: https://docs.ultralytics.com/tasks/segment # Parameters nc: 80 # number of classes scales: # model compound scaling constants, i.e. 'model=yolo11n-seg.yaml' will call yolo11-seg.yaml with scale 'n' # [depth, width, max_channels] n: [0.50, 0.25, 1024] # summary: 355 layers, 2876848 parameters, 2876832 gradients, 10.5 GFLOPs s: [0.50, 0.50, 1024] # summary: 355 layers, 10113248 parameters, 10113232 gradients, 35.8 GFLOPs m: [0.50, 1.00, 512] # summary: 445 layers, 22420896 parameters, 22420880 gradients, 123.9 GFLOPs l: [1.00, 1.00, 512] # summary: 667 layers, 27678368 parameters, 27678352 gradients, 143.0 GFLOPs x: [1.00, 1.50, 512] # summary: 667 layers, 62142656 parameters, 62142640 gradients, 320.2 GFLOPs # YOLO11n backbone backbone: # [from, repeats, module, args] - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 - [-1, 2, C3k2, [256, False, 0.25]] - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 - [-1, 2, C3k2, [512, False, 0.25]] - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 - [-1, 2, C3k2, [512, True]] - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 - [-1, 2, C3k2, [1024, True]] - [-1, 1, SPPF, [1024, 5]] # 9 - [-1, 2, C2PSA, [1024]] # 10 # YOLO11n head head: - [-1, 1, nn.Upsample, [None, 2, "nearest"]] - [[-1, 6], 1, Concat, [1]] # cat backbone P4 - [-1, 2, C3k2, [512, False]] # 13 - [-1, 1, nn.Upsample, [None, 2, "nearest"]] - [[-1, 4], 1, Concat, [1]] # cat backbone P3 - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small) - [-1, 1, Conv, [256, 3, 2]] - [[-1, 13], 1, Concat, [1]] # cat head P4 - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium) - [-1, 1, Conv, [512, 3, 2]] - [[-1, 10], 1, Concat, [1]] # cat head P5 - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large) - [[16, 19, 22], 1, Segment, [nc, 32, 256]] # Detect(P3, P4, P5)