Spaces:
Running
Running
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
from ultralytics.solutions.solutions import BaseSolution | |
from ultralytics.utils.plotting import Annotator, colors | |
class ObjectCounter(BaseSolution): | |
""" | |
A class to manage the counting of objects in a real-time video stream based on their tracks. | |
This class extends the BaseSolution class and provides functionality for counting objects moving in and out of a | |
specified region in a video stream. It supports both polygonal and linear regions for counting. | |
Attributes: | |
in_count (int): Counter for objects moving inward. | |
out_count (int): Counter for objects moving outward. | |
counted_ids (List[int]): List of IDs of objects that have been counted. | |
classwise_counts (Dict[str, Dict[str, int]]): Dictionary for counts, categorized by object class. | |
region_initialized (bool): Flag indicating whether the counting region has been initialized. | |
show_in (bool): Flag to control display of inward count. | |
show_out (bool): Flag to control display of outward count. | |
Methods: | |
count_objects: Counts objects within a polygonal or linear region. | |
store_classwise_counts: Initializes class-wise counts if not already present. | |
display_counts: Displays object counts on the frame. | |
count: Processes input data (frames or object tracks) and updates counts. | |
Examples: | |
>>> counter = ObjectCounter() | |
>>> frame = cv2.imread("frame.jpg") | |
>>> processed_frame = counter.count(frame) | |
>>> print(f"Inward count: {counter.in_count}, Outward count: {counter.out_count}") | |
""" | |
def __init__(self, **kwargs): | |
"""Initializes the ObjectCounter class for real-time object counting in video streams.""" | |
super().__init__(**kwargs) | |
self.in_count = 0 # Counter for objects moving inward | |
self.out_count = 0 # Counter for objects moving outward | |
self.counted_ids = [] # List of IDs of objects that have been counted | |
self.classwise_counts = {} # Dictionary for counts, categorized by object class | |
self.region_initialized = False # Bool variable for region initialization | |
self.show_in = self.CFG["show_in"] | |
self.show_out = self.CFG["show_out"] | |
def count_objects(self, current_centroid, track_id, prev_position, cls): | |
""" | |
Counts objects within a polygonal or linear region based on their tracks. | |
Args: | |
current_centroid (Tuple[float, float]): Current centroid values in the current frame. | |
track_id (int): Unique identifier for the tracked object. | |
prev_position (Tuple[float, float]): Last frame position coordinates (x, y) of the track. | |
cls (int): Class index for classwise count updates. | |
Examples: | |
>>> counter = ObjectCounter() | |
>>> track_line = {1: [100, 200], 2: [110, 210], 3: [120, 220]} | |
>>> box = [130, 230, 150, 250] | |
>>> track_id = 1 | |
>>> prev_position = (120, 220) | |
>>> cls = 0 | |
>>> counter.count_objects(current_centroid, track_id, prev_position, cls) | |
""" | |
if prev_position is None or track_id in self.counted_ids: | |
return | |
if len(self.region) == 2: # Linear region (defined as a line segment) | |
line = self.LineString(self.region) # Check if the line intersects the trajectory of the object | |
if line.intersects(self.LineString([prev_position, current_centroid])): | |
# Determine orientation of the region (vertical or horizontal) | |
if abs(self.region[0][0] - self.region[1][0]) < abs(self.region[0][1] - self.region[1][1]): | |
# Vertical region: Compare x-coordinates to determine direction | |
if current_centroid[0] > prev_position[0]: # Moving right | |
self.in_count += 1 | |
self.classwise_counts[self.names[cls]]["IN"] += 1 | |
else: # Moving left | |
self.out_count += 1 | |
self.classwise_counts[self.names[cls]]["OUT"] += 1 | |
# Horizontal region: Compare y-coordinates to determine direction | |
elif current_centroid[1] > prev_position[1]: # Moving downward | |
self.in_count += 1 | |
self.classwise_counts[self.names[cls]]["IN"] += 1 | |
else: # Moving upward | |
self.out_count += 1 | |
self.classwise_counts[self.names[cls]]["OUT"] += 1 | |
self.counted_ids.append(track_id) | |
elif len(self.region) > 2: # Polygonal region | |
polygon = self.Polygon(self.region) | |
if polygon.contains(self.Point(current_centroid)): | |
# Determine motion direction for vertical or horizontal polygons | |
region_width = max(p[0] for p in self.region) - min(p[0] for p in self.region) | |
region_height = max(p[1] for p in self.region) - min(p[1] for p in self.region) | |
if ( | |
region_width < region_height | |
and current_centroid[0] > prev_position[0] | |
or region_width >= region_height | |
and current_centroid[1] > prev_position[1] | |
): # Moving right | |
self.in_count += 1 | |
self.classwise_counts[self.names[cls]]["IN"] += 1 | |
else: # Moving left | |
self.out_count += 1 | |
self.classwise_counts[self.names[cls]]["OUT"] += 1 | |
self.counted_ids.append(track_id) | |
def store_classwise_counts(self, cls): | |
""" | |
Initialize class-wise counts for a specific object class if not already present. | |
Args: | |
cls (int): Class index for classwise count updates. | |
This method ensures that the 'classwise_counts' dictionary contains an entry for the specified class, | |
initializing 'IN' and 'OUT' counts to zero if the class is not already present. | |
Examples: | |
>>> counter = ObjectCounter() | |
>>> counter.store_classwise_counts(0) # Initialize counts for class index 0 | |
>>> print(counter.classwise_counts) | |
{'person': {'IN': 0, 'OUT': 0}} | |
""" | |
if self.names[cls] not in self.classwise_counts: | |
self.classwise_counts[self.names[cls]] = {"IN": 0, "OUT": 0} | |
def display_counts(self, im0): | |
""" | |
Displays object counts on the input image or frame. | |
Args: | |
im0 (numpy.ndarray): The input image or frame to display counts on. | |
Examples: | |
>>> counter = ObjectCounter() | |
>>> frame = cv2.imread("image.jpg") | |
>>> counter.display_counts(frame) | |
""" | |
labels_dict = { | |
str.capitalize(key): f"{'IN ' + str(value['IN']) if self.show_in else ''} " | |
f"{'OUT ' + str(value['OUT']) if self.show_out else ''}".strip() | |
for key, value in self.classwise_counts.items() | |
if value["IN"] != 0 or value["OUT"] != 0 | |
} | |
if labels_dict: | |
self.annotator.display_analytics(im0, labels_dict, (104, 31, 17), (255, 255, 255), 10) | |
def count(self, im0): | |
""" | |
Processes input data (frames or object tracks) and updates object counts. | |
This method initializes the counting region, extracts tracks, draws bounding boxes and regions, updates | |
object counts, and displays the results on the input image. | |
Args: | |
im0 (numpy.ndarray): The input image or frame to be processed. | |
Returns: | |
(numpy.ndarray): The processed image with annotations and count information. | |
Examples: | |
>>> counter = ObjectCounter() | |
>>> frame = cv2.imread("path/to/image.jpg") | |
>>> processed_frame = counter.count(frame) | |
""" | |
if not self.region_initialized: | |
self.initialize_region() | |
self.region_initialized = True | |
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator | |
self.extract_tracks(im0) # Extract tracks | |
self.annotator.draw_region( | |
reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2 | |
) # Draw region | |
# Iterate over bounding boxes, track ids and classes index | |
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss): | |
# Draw bounding box and counting region | |
self.annotator.box_label(box, label=self.names[cls], color=colors(cls, True)) | |
self.store_tracking_history(track_id, box) # Store track history | |
self.store_classwise_counts(cls) # store classwise counts in dict | |
# Draw tracks of objects | |
self.annotator.draw_centroid_and_tracks( | |
self.track_line, color=colors(int(cls), True), track_thickness=self.line_width | |
) | |
current_centroid = ((box[0] + box[2]) / 2, (box[1] + box[3]) / 2) | |
# store previous position of track for object counting | |
prev_position = None | |
if len(self.track_history[track_id]) > 1: | |
prev_position = self.track_history[track_id][-2] | |
self.count_objects(current_centroid, track_id, prev_position, cls) # Perform object counting | |
self.display_counts(im0) # Display the counts on the frame | |
self.display_output(im0) # display output with base class function | |
return im0 # return output image for more usage | |