Spaces:
Running
Running
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
from itertools import cycle | |
import cv2 | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas | |
from matplotlib.figure import Figure | |
from ultralytics.solutions.solutions import BaseSolution # Import a parent class | |
class Analytics(BaseSolution): | |
""" | |
A class for creating and updating various types of charts for visual analytics. | |
This class extends BaseSolution to provide functionality for generating line, bar, pie, and area charts | |
based on object detection and tracking data. | |
Attributes: | |
type (str): The type of analytics chart to generate ('line', 'bar', 'pie', or 'area'). | |
x_label (str): Label for the x-axis. | |
y_label (str): Label for the y-axis. | |
bg_color (str): Background color of the chart frame. | |
fg_color (str): Foreground color of the chart frame. | |
title (str): Title of the chart window. | |
max_points (int): Maximum number of data points to display on the chart. | |
fontsize (int): Font size for text display. | |
color_cycle (cycle): Cyclic iterator for chart colors. | |
total_counts (int): Total count of detected objects (used for line charts). | |
clswise_count (Dict[str, int]): Dictionary for class-wise object counts. | |
fig (Figure): Matplotlib figure object for the chart. | |
ax (Axes): Matplotlib axes object for the chart. | |
canvas (FigureCanvas): Canvas for rendering the chart. | |
Methods: | |
process_data: Processes image data and updates the chart. | |
update_graph: Updates the chart with new data points. | |
Examples: | |
>>> analytics = Analytics(analytics_type="line") | |
>>> frame = cv2.imread("image.jpg") | |
>>> processed_frame = analytics.process_data(frame, frame_number=1) | |
>>> cv2.imshow("Analytics", processed_frame) | |
""" | |
def __init__(self, **kwargs): | |
"""Initialize Analytics class with various chart types for visual data representation.""" | |
super().__init__(**kwargs) | |
self.type = self.CFG["analytics_type"] # extract type of analytics | |
self.x_label = "Classes" if self.type in {"bar", "pie"} else "Frame#" | |
self.y_label = "Total Counts" | |
# Predefined data | |
self.bg_color = "#F3F3F3" # background color of frame | |
self.fg_color = "#111E68" # foreground color of frame | |
self.title = "Ultralytics Solutions" # window name | |
self.max_points = 45 # maximum points to be drawn on window | |
self.fontsize = 25 # text font size for display | |
figsize = (19.2, 10.8) # Set output image size 1920 * 1080 | |
self.color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"]) | |
self.total_counts = 0 # count variable for storing total counts i.e. for line | |
self.clswise_count = {} # dictionary for class-wise counts | |
# Ensure line and area chart | |
if self.type in {"line", "area"}: | |
self.lines = {} | |
self.fig = Figure(facecolor=self.bg_color, figsize=figsize) | |
self.canvas = FigureCanvas(self.fig) # Set common axis properties | |
self.ax = self.fig.add_subplot(111, facecolor=self.bg_color) | |
if self.type == "line": | |
(self.line,) = self.ax.plot([], [], color="cyan", linewidth=self.line_width) | |
elif self.type in {"bar", "pie"}: | |
# Initialize bar or pie plot | |
self.fig, self.ax = plt.subplots(figsize=figsize, facecolor=self.bg_color) | |
self.canvas = FigureCanvas(self.fig) # Set common axis properties | |
self.ax.set_facecolor(self.bg_color) | |
self.color_mapping = {} | |
if self.type == "pie": # Ensure pie chart is circular | |
self.ax.axis("equal") | |
def process_data(self, im0, frame_number): | |
""" | |
Processes image data and runs object tracking to update analytics charts. | |
Args: | |
im0 (np.ndarray): Input image for processing. | |
frame_number (int): Video frame number for plotting the data. | |
Returns: | |
(np.ndarray): Processed image with updated analytics chart. | |
Raises: | |
ModuleNotFoundError: If an unsupported chart type is specified. | |
Examples: | |
>>> analytics = Analytics(analytics_type="line") | |
>>> frame = np.zeros((480, 640, 3), dtype=np.uint8) | |
>>> processed_frame = analytics.process_data(frame, frame_number=1) | |
""" | |
self.extract_tracks(im0) # Extract tracks | |
if self.type == "line": | |
for _ in self.boxes: | |
self.total_counts += 1 | |
im0 = self.update_graph(frame_number=frame_number) | |
self.total_counts = 0 | |
elif self.type in {"pie", "bar", "area"}: | |
self.clswise_count = {} | |
for box, cls in zip(self.boxes, self.clss): | |
if self.names[int(cls)] in self.clswise_count: | |
self.clswise_count[self.names[int(cls)]] += 1 | |
else: | |
self.clswise_count[self.names[int(cls)]] = 1 | |
im0 = self.update_graph(frame_number=frame_number, count_dict=self.clswise_count, plot=self.type) | |
else: | |
raise ModuleNotFoundError(f"{self.type} chart is not supported ❌") | |
return im0 | |
def update_graph(self, frame_number, count_dict=None, plot="line"): | |
""" | |
Updates the graph with new data for single or multiple classes. | |
Args: | |
frame_number (int): The current frame number. | |
count_dict (Dict[str, int] | None): Dictionary with class names as keys and counts as values for multiple | |
classes. If None, updates a single line graph. | |
plot (str): Type of the plot. Options are 'line', 'bar', 'pie', or 'area'. | |
Returns: | |
(np.ndarray): Updated image containing the graph. | |
Examples: | |
>>> analytics = Analytics() | |
>>> frame_number = 10 | |
>>> count_dict = {"person": 5, "car": 3} | |
>>> updated_image = analytics.update_graph(frame_number, count_dict, plot="bar") | |
""" | |
if count_dict is None: | |
# Single line update | |
x_data = np.append(self.line.get_xdata(), float(frame_number)) | |
y_data = np.append(self.line.get_ydata(), float(self.total_counts)) | |
if len(x_data) > self.max_points: | |
x_data, y_data = x_data[-self.max_points :], y_data[-self.max_points :] | |
self.line.set_data(x_data, y_data) | |
self.line.set_label("Counts") | |
self.line.set_color("#7b0068") # Pink color | |
self.line.set_marker("*") | |
self.line.set_markersize(self.line_width * 5) | |
else: | |
labels = list(count_dict.keys()) | |
counts = list(count_dict.values()) | |
if plot == "area": | |
color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"]) | |
# Multiple lines or area update | |
x_data = self.ax.lines[0].get_xdata() if self.ax.lines else np.array([]) | |
y_data_dict = {key: np.array([]) for key in count_dict.keys()} | |
if self.ax.lines: | |
for line, key in zip(self.ax.lines, count_dict.keys()): | |
y_data_dict[key] = line.get_ydata() | |
x_data = np.append(x_data, float(frame_number)) | |
max_length = len(x_data) | |
for key in count_dict.keys(): | |
y_data_dict[key] = np.append(y_data_dict[key], float(count_dict[key])) | |
if len(y_data_dict[key]) < max_length: | |
y_data_dict[key] = np.pad(y_data_dict[key], (0, max_length - len(y_data_dict[key]))) | |
if len(x_data) > self.max_points: | |
x_data = x_data[1:] | |
for key in count_dict.keys(): | |
y_data_dict[key] = y_data_dict[key][1:] | |
self.ax.clear() | |
for key, y_data in y_data_dict.items(): | |
color = next(color_cycle) | |
self.ax.fill_between(x_data, y_data, color=color, alpha=0.7) | |
self.ax.plot( | |
x_data, | |
y_data, | |
color=color, | |
linewidth=self.line_width, | |
marker="o", | |
markersize=self.line_width * 5, | |
label=f"{key} Data Points", | |
) | |
if plot == "bar": | |
self.ax.clear() # clear bar data | |
for label in labels: # Map labels to colors | |
if label not in self.color_mapping: | |
self.color_mapping[label] = next(self.color_cycle) | |
colors = [self.color_mapping[label] for label in labels] | |
bars = self.ax.bar(labels, counts, color=colors) | |
for bar, count in zip(bars, counts): | |
self.ax.text( | |
bar.get_x() + bar.get_width() / 2, | |
bar.get_height(), | |
str(count), | |
ha="center", | |
va="bottom", | |
color=self.fg_color, | |
) | |
# Create the legend using labels from the bars | |
for bar, label in zip(bars, labels): | |
bar.set_label(label) # Assign label to each bar | |
self.ax.legend(loc="upper left", fontsize=13, facecolor=self.fg_color, edgecolor=self.fg_color) | |
if plot == "pie": | |
total = sum(counts) | |
percentages = [size / total * 100 for size in counts] | |
start_angle = 90 | |
self.ax.clear() | |
# Create pie chart and create legend labels with percentages | |
wedges, autotexts = self.ax.pie( | |
counts, labels=labels, startangle=start_angle, textprops={"color": self.fg_color}, autopct=None | |
) | |
legend_labels = [f"{label} ({percentage:.1f}%)" for label, percentage in zip(labels, percentages)] | |
# Assign the legend using the wedges and manually created labels | |
self.ax.legend(wedges, legend_labels, title="Classes", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1)) | |
self.fig.subplots_adjust(left=0.1, right=0.75) # Adjust layout to fit the legend | |
# Common plot settings | |
self.ax.set_facecolor("#f0f0f0") # Set to light gray or any other color you like | |
self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize) | |
self.ax.set_xlabel(self.x_label, color=self.fg_color, fontsize=self.fontsize - 3) | |
self.ax.set_ylabel(self.y_label, color=self.fg_color, fontsize=self.fontsize - 3) | |
# Add and format legend | |
legend = self.ax.legend(loc="upper left", fontsize=13, facecolor=self.bg_color, edgecolor=self.bg_color) | |
for text in legend.get_texts(): | |
text.set_color(self.fg_color) | |
# Redraw graph, update view, capture, and display the updated plot | |
self.ax.relim() | |
self.ax.autoscale_view() | |
self.canvas.draw() | |
im0 = np.array(self.canvas.renderer.buffer_rgba()) | |
im0 = cv2.cvtColor(im0[:, :, :3], cv2.COLOR_RGBA2BGR) | |
self.display_output(im0) | |
return im0 # Return the image | |