Spaces:
Running
Running
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
import cv2 | |
import pytest | |
from tests import TMP | |
from ultralytics import YOLO, solutions | |
from ultralytics.utils import ASSETS_URL, WEIGHTS_DIR | |
from ultralytics.utils.downloads import safe_download | |
DEMO_VIDEO = "solutions_ci_demo.mp4" | |
POSE_VIDEO = "solution_ci_pose_demo.mp4" | |
def test_major_solutions(): | |
"""Test the object counting, heatmap, speed estimation, trackzone and queue management solution.""" | |
safe_download(url=f"{ASSETS_URL}/{DEMO_VIDEO}", dir=TMP) | |
cap = cv2.VideoCapture(str(TMP / DEMO_VIDEO)) | |
assert cap.isOpened(), "Error reading video file" | |
region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360)] | |
counter = solutions.ObjectCounter(region=region_points, model="yolo11n.pt", show=False) # Test object counter | |
heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, model="yolo11n.pt", show=False) # Test heatmaps | |
heatmap_count = solutions.Heatmap( | |
colormap=cv2.COLORMAP_PARULA, model="yolo11n.pt", show=False, region=region_points | |
) # Test heatmaps with object counting | |
speed = solutions.SpeedEstimator(region=region_points, model="yolo11n.pt", show=False) # Test queue manager | |
queue = solutions.QueueManager(region=region_points, model="yolo11n.pt", show=False) # Test speed estimation | |
line_analytics = solutions.Analytics(analytics_type="line", model="yolo11n.pt", show=False) # line analytics | |
pie_analytics = solutions.Analytics(analytics_type="pie", model="yolo11n.pt", show=False) # line analytics | |
bar_analytics = solutions.Analytics(analytics_type="bar", model="yolo11n.pt", show=False) # line analytics | |
area_analytics = solutions.Analytics(analytics_type="area", model="yolo11n.pt", show=False) # line analytics | |
trackzone = solutions.TrackZone(region=region_points, model="yolo11n.pt", show=False) # Test trackzone | |
frame_count = 0 # Required for analytics | |
while cap.isOpened(): | |
success, im0 = cap.read() | |
if not success: | |
break | |
frame_count += 1 | |
original_im0 = im0.copy() | |
_ = counter.count(original_im0.copy()) | |
_ = heatmap.generate_heatmap(original_im0.copy()) | |
_ = heatmap_count.generate_heatmap(original_im0.copy()) | |
_ = speed.estimate_speed(original_im0.copy()) | |
_ = queue.process_queue(original_im0.copy()) | |
_ = line_analytics.process_data(original_im0.copy(), frame_count) | |
_ = pie_analytics.process_data(original_im0.copy(), frame_count) | |
_ = bar_analytics.process_data(original_im0.copy(), frame_count) | |
_ = area_analytics.process_data(original_im0.copy(), frame_count) | |
_ = trackzone.trackzone(original_im0.copy()) | |
cap.release() | |
# Test workouts monitoring | |
safe_download(url=f"{ASSETS_URL}/{POSE_VIDEO}", dir=TMP) | |
cap = cv2.VideoCapture(str(TMP / POSE_VIDEO)) | |
assert cap.isOpened(), "Error reading video file" | |
gym = solutions.AIGym(kpts=[5, 11, 13], show=False) | |
while cap.isOpened(): | |
success, im0 = cap.read() | |
if not success: | |
break | |
_ = gym.monitor(im0) | |
cap.release() | |
def test_instance_segmentation(): | |
"""Test the instance segmentation solution.""" | |
from ultralytics.utils.plotting import Annotator, colors | |
model = YOLO(WEIGHTS_DIR / "yolo11n-seg.pt") | |
names = model.names | |
cap = cv2.VideoCapture(TMP / DEMO_VIDEO) | |
assert cap.isOpened(), "Error reading video file" | |
while cap.isOpened(): | |
success, im0 = cap.read() | |
if not success: | |
break | |
results = model.predict(im0) | |
annotator = Annotator(im0, line_width=2) | |
if results[0].masks is not None: | |
clss = results[0].boxes.cls.cpu().tolist() | |
masks = results[0].masks.xy | |
for mask, cls in zip(masks, clss): | |
color = colors(int(cls), True) | |
annotator.seg_bbox(mask=mask, mask_color=color, label=names[int(cls)]) | |
cap.release() | |
cv2.destroyAllWindows() | |
def test_streamlit_predict(): | |
"""Test streamlit predict live inference solution.""" | |
solutions.Inference().inference() | |