Spaces:
Running
Running
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
from itertools import product | |
from pathlib import Path | |
import pytest | |
import torch | |
from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE, MODEL, SOURCE | |
from ultralytics import YOLO | |
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS | |
from ultralytics.utils import ASSETS, WEIGHTS_DIR | |
from ultralytics.utils.checks import check_amp | |
def test_checks(): | |
"""Validate CUDA settings against torch CUDA functions.""" | |
assert torch.cuda.is_available() == CUDA_IS_AVAILABLE | |
assert torch.cuda.device_count() == CUDA_DEVICE_COUNT | |
def test_amp(): | |
"""Test AMP training checks.""" | |
model = YOLO("yolo11n.pt").model.cuda() | |
assert check_amp(model) | |
def test_export_engine_matrix(task, dynamic, int8, half, batch): | |
"""Test YOLO model export to TensorRT format for various configurations and run inference.""" | |
file = YOLO(TASK2MODEL[task]).export( | |
format="engine", | |
imgsz=32, | |
dynamic=dynamic, | |
int8=int8, | |
half=half, | |
batch=batch, | |
data=TASK2DATA[task], | |
workspace=1, # reduce workspace GB for less resource utilization during testing | |
simplify=True, # use 'onnxslim' | |
) | |
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference | |
Path(file).unlink() # cleanup | |
Path(file).with_suffix(".cache").unlink() if int8 else None # cleanup INT8 cache | |
def test_train(): | |
"""Test model training on a minimal dataset using available CUDA devices.""" | |
device = 0 if CUDA_DEVICE_COUNT == 1 else [0, 1] | |
YOLO(MODEL).train(data="coco8.yaml", imgsz=64, epochs=1, device=device) # requires imgsz>=64 | |
def test_predict_multiple_devices(): | |
"""Validate model prediction consistency across CPU and CUDA devices.""" | |
model = YOLO("yolo11n.pt") | |
model = model.cpu() | |
assert str(model.device) == "cpu" | |
_ = model(SOURCE) # CPU inference | |
assert str(model.device) == "cpu" | |
model = model.to("cuda:0") | |
assert str(model.device) == "cuda:0" | |
_ = model(SOURCE) # CUDA inference | |
assert str(model.device) == "cuda:0" | |
model = model.cpu() | |
assert str(model.device) == "cpu" | |
_ = model(SOURCE) # CPU inference | |
assert str(model.device) == "cpu" | |
model = model.cuda() | |
assert str(model.device) == "cuda:0" | |
_ = model(SOURCE) # CUDA inference | |
assert str(model.device) == "cuda:0" | |
def test_autobatch(): | |
"""Check optimal batch size for YOLO model training using autobatch utility.""" | |
from ultralytics.utils.autobatch import check_train_batch_size | |
check_train_batch_size(YOLO(MODEL).model.cuda(), imgsz=128, amp=True) | |
def test_utils_benchmarks(): | |
"""Profile YOLO models for performance benchmarks.""" | |
from ultralytics.utils.benchmarks import ProfileModels | |
# Pre-export a dynamic engine model to use dynamic inference | |
YOLO(MODEL).export(format="engine", imgsz=32, dynamic=True, batch=1) | |
ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile() | |
def test_predict_sam(): | |
"""Test SAM model predictions using different prompts, including bounding boxes and point annotations.""" | |
from ultralytics import SAM | |
from ultralytics.models.sam import Predictor as SAMPredictor | |
# Load a model | |
model = SAM(WEIGHTS_DIR / "sam2.1_b.pt") | |
# Display model information (optional) | |
model.info() | |
# Run inference | |
model(SOURCE, device=0) | |
# Run inference with bboxes prompt | |
model(SOURCE, bboxes=[439, 437, 524, 709], device=0) | |
# Run inference with no labels | |
model(ASSETS / "zidane.jpg", points=[900, 370], device=0) | |
# Run inference with 1D points and 1D labels | |
model(ASSETS / "zidane.jpg", points=[900, 370], labels=[1], device=0) | |
# Run inference with 2D points and 1D labels | |
model(ASSETS / "zidane.jpg", points=[[900, 370]], labels=[1], device=0) | |
# Run inference with multiple 2D points and 1D labels | |
model(ASSETS / "zidane.jpg", points=[[400, 370], [900, 370]], labels=[1, 1], device=0) | |
# Run inference with 3D points and 2D labels (multiple points per object) | |
model(ASSETS / "zidane.jpg", points=[[[900, 370], [1000, 100]]], labels=[[1, 1]], device=0) | |
# Create SAMPredictor | |
overrides = dict(conf=0.25, task="segment", mode="predict", imgsz=1024, model=WEIGHTS_DIR / "mobile_sam.pt") | |
predictor = SAMPredictor(overrides=overrides) | |
# Set image | |
predictor.set_image(ASSETS / "zidane.jpg") # set with image file | |
# predictor(bboxes=[439, 437, 524, 709]) | |
# predictor(points=[900, 370], labels=[1]) | |
# Reset image | |
predictor.reset_image() | |