import cv2 import numpy as np from PIL import Image from pipeline.mmocr.mmocr.apis.inferencers import MMOCRInferencer # BUILD MMOCR class MAERec: def __init__(self): self.mmocr_inferencer = MMOCRInferencer( "/home/wcx/wcx/GroundingDINO/LVLM/mmocr/configs/textdet/dbnetpp/dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015.py", "/newdisk3/wcx/ocr_model/dbnetpp.pth", "/home/wcx/wcx/GroundingDINO/LVLM/mmocr/configs/textrecog/maerec/maerec_b_union14m.py", "/newdisk3/wcx/ocr_model/maerec_b.pth", device="cuda:0") def execute(self, image_path, use_detector=False): """Run MMOCR and SAM Args: img (np.ndarray): Input image use_detector (bool, optional): Whether to use detector. Defaults to True. """ data = Image.open(image_path).convert("RGB") img = np.array(data) if use_detector: mode = 'det_rec' else: mode = 'rec' # Build MMOCR self.mmocr_inferencer.mode = mode result = self.mmocr_inferencer(img, return_vis=True) visualization = result['visualization'][0] result = result['predictions'][0] if mode == 'det_rec': rec_texts = result['rec_texts'] det_polygons = result['det_polygons'] det_results = [] for rec_text, det_polygon in zip(rec_texts, det_polygons): det_polygon = np.array(det_polygon).astype(np.int32).tolist() det_results.append(f'{rec_text}: {det_polygon}') out_results = '\n'.join(det_results) visualization = cv2.cvtColor( np.array(visualization), cv2.COLOR_RGB2BGR) cv2.imwrite("/home/wcx/wcx/Union14M/results/{}".format(image_path.split("/")[-1]), np.array(visualization)) visualization = "Done" else: rec_text = result['rec_texts'][0] rec_score = result['rec_scores'][0] out_results = f'pred: {rec_text} \n score: {rec_score:.2f}' visualization = None return visualization, out_results.split("\n")[0][6:] if __name__ == '__main__': scene_text_model = MAERec() vis, res = scene_text_model.execute("/newdisk3/wcx/MLLM/text-to-image/dalle3/582.jpg") print(vis) print(res)