# import sys # sys.path.append("/home/wcx/wcx/EasyDetect/pipeline") # from run import * # ''' # 把一些文件移动到此文件路径下 # ''' # text = "A person is cutting a birthday cake with two red candles that spell out \"21\". The surface of the cake is round, and there is a balloon in the room. The person is using a silver knife to cut the cake." # image_path = "/newdisk3/wcx/val2014/COCO_val2014_000000297425.jpg" # pipeline = Pipeline() # res = pipeline.run(text=text, image_path=image_path) # def greet(name, cnt): # return "Hello " * cnt + name + "!" # demo = gr.Interface( # fn=greet, # inputs=["text", "slider"], # outputs=["text"], # ) # demo.launch() # def generate_mutimodal(title, context, img): # return f"Title:{title}\nContext:{context}\n...{img}" # server = gr.Interface( # fn=generate_mutimodal, # inputs=[ # gr.Textbox(lines=1, placeholder="请输入标题"), # gr.Textbox(lines=2, placeholder="请输入正文"), # gr.Image(shape=(200, 200), label="请上传图片(可选)") # ], # outputs="text" # ) # server.launch() import numpy as np import gradio as gr def sepia(input_img): #处理图像 sepia_filter = np.array([ [0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131] ]) sepia_img = input_img.dot(sepia_filter.T) sepia_img /= sepia_img.max() return sepia_img # #shape设置输入图像大小 # demo = gr.Interface(sepia, gr.Image(), "image") # demo.launch() # Download human-readable labels for ImageNet. gr.Interface(fn=sepia, inputs=gr.Image(type="pil")).launch()