_base_ = ['textdet.py'] _base_.train_preparer.gatherer.img_dir = 'textdet_imgs/train' _base_.train_preparer.packer.type = 'TextSpottingPacker' _base_.test_preparer.gatherer.img_dir = 'textdet_imgs/test' _base_.test_preparer.packer.type = 'TextSpottingPacker' _base_.test_preparer.obtainer.files = [ dict( url='https://rrc.cvc.uab.es/downloads/ch4_test_images.zip', save_name='ic15_textdet_test_img.zip', md5='97e4c1ddcf074ffcc75feff2b63c35dd', content=['image'], mapping=[['ic15_textdet_test_img', 'textdet_imgs/test']]), dict( url='https://rrc.cvc.uab.es/downloads/' 'Challenge4_Test_Task4_GT.zip', save_name='ic15_textdet_test_gt.zip', md5='8bce173b06d164b98c357b0eb96ef430', content=['annotation'], mapping=[['ic15_textdet_test_gt', 'annotations/test']]), dict( url='https://download.openmmlab.com/mmocr/data/1.x/' 'textspotting/icdar2015/lexicons.zip', save_name='icdar2015_lexicons.zip', md5='daec48ee72de25a4293a6b12cdc181f5', content=['annotation'], mapping=[['icdar2015_lexicons/lexicons', 'lexicons']]), ] config_generator = dict(type='TextSpottingConfigGenerator') delete = [ 'annotations', 'ic15_textdet_test_img', 'ic15_textdet_train_img', 'icdar2015_lexicons' ]