# Copyright (c) OpenMMLab. All rights reserved. import unittest import numpy as np import torch from mmocr.utils import (bbox2poly, bbox_center_distance, bbox_diag_distance, bezier2polygon, is_on_same_line, rescale_bbox, rescale_bboxes, stitch_boxes_into_lines) from mmocr.utils.bbox_utils import bbox_jitter class TestBbox2poly(unittest.TestCase): def setUp(self) -> None: self.box_array = np.array([1, 1, 2, 2]) self.box_list = [1, 1, 2, 2] self.box_tensor = torch.tensor([1, 1, 2, 2]) self.gt_xyxy = np.array([1, 1, 2, 1, 2, 2, 1, 2]) self.gt_xywh = np.array([1, 1, 3, 1, 3, 3, 1, 3]) def test_bbox2poly(self): # mode: xyxy # test np.array self.assertTrue( np.array_equal(bbox2poly(self.box_array), self.gt_xyxy)) # test list self.assertTrue(np.array_equal(bbox2poly(self.box_list), self.gt_xyxy)) # test tensor self.assertTrue( np.array_equal(bbox2poly(self.box_tensor), self.gt_xyxy)) # mode: xywh # test np.array self.assertTrue( np.array_equal( bbox2poly(self.box_array, mode='xywh'), self.gt_xywh)) # test list self.assertTrue( np.array_equal( bbox2poly(self.box_list, mode='xywh'), self.gt_xywh)) # test tensor self.assertTrue( np.array_equal( bbox2poly(self.box_tensor, mode='xywh'), self.gt_xywh)) # invalid mode with self.assertRaises(NotImplementedError): bbox2poly(self.box_tensor, mode='a') class TestBoxCenterDistance(unittest.TestCase): def setUp(self) -> None: self.box1_list = [1, 1, 3, 3] self.box2_list = [2, 2, 4, 2] self.box1_array = np.array([1, 1, 3, 3]) self.box2_array = np.array([2, 2, 4, 2]) self.box1_tensor = torch.tensor([1, 1, 3, 3]) self.box2_tensor = torch.tensor([2, 2, 4, 2]) self.gt = 1 def test_box_center_distance(self): # test list self.assertEqual( bbox_center_distance(self.box1_list, self.box2_list), self.gt) # test np.array self.assertEqual( bbox_center_distance(self.box1_array, self.box2_array), self.gt) # test tensor self.assertEqual( bbox_center_distance(self.box1_tensor, self.box2_tensor), self.gt) class TestBoxDiagDistance(unittest.TestCase): def setUp(self) -> None: self.box_list1 = [0, 0, 1, 1, 0, 10, -10, 0] self.box_array1 = np.array(self.box_list1) self.box_tensor1 = torch.tensor(self.box_list1) self.gt1 = 10 self.box_list2 = [0, 0, 1, 1] self.box_array2 = np.array(self.box_list2) self.box_tensor2 = torch.tensor(self.box_list2) self.gt2 = np.sqrt(2) def test_bbox_diag_distance(self): # quad [x1, y1, x2, y2, x3, y3, x4, y4] # list self.assertEqual(bbox_diag_distance(self.box_list1), self.gt1) # array self.assertEqual(bbox_diag_distance(self.box_array1), self.gt1) # tensor self.assertEqual(bbox_diag_distance(self.box_tensor1), self.gt1) # rect [x1, y1, x2, y2] # list self.assertAlmostEqual(bbox_diag_distance(self.box_list2), self.gt2) # array self.assertAlmostEqual(bbox_diag_distance(self.box_array2), self.gt2) # tensor self.assertAlmostEqual(bbox_diag_distance(self.box_tensor2), self.gt2) class TestBezier2Polygon(unittest.TestCase): def setUp(self) -> None: self.bezier_points1 = [ 37.0, 249.0, 72.5, 229.55, 95.34, 220.65, 134.0, 216.0, 132.0, 233.0, 82.11, 240.2, 72.46, 247.16, 38.0, 263.0 ] self.gt1 = np.array([[37.0, 249.0], [42.50420761043885, 246.01570199737577], [47.82291296107305, 243.2012392477038], [52.98102930456334, 240.5511007435486], [58.00346989357049, 238.05977547747486], [62.91514798075522, 235.721752442047], [67.74097681877824, 233.53152062982943], [72.50586966030032, 231.48356903338674], [77.23473975798221, 229.57238664528356], [81.95250036448464, 227.79246245808432], [86.68406473246829, 226.13828546435346], [91.45434611459396, 224.60434465665548], [96.28825776352238, 223.18512902755504], [101.21071293191426, 221.87512756961655], [106.24662487243039, 220.6688292754046], [111.42090683773145, 219.5607231374836], [116.75847208047819, 218.5452981484181], [122.28423385333137, 217.6170433007727], [128.02310540895172, 216.77044758711182], [134.0, 216.0], [132.0, 233.0], [124.4475521213005, 234.13617728531858], [117.50700976818779, 235.2763434903047], [111.12146960198277, 236.42847645429362], [105.2340282840064, 237.6005540166205], [99.78778247557953, 238.80055401662054], [94.72582883802303, 240.0364542936288], [89.99126403265781, 241.31623268698053], [85.52718472080478, 242.64786703601104], [81.27668756378483, 244.03933518005545], [77.1828692229188, 245.49861495844874], [73.18882635952762, 247.0336842105263], [69.23765563493221, 248.65252077562326], [65.27245371045342, 250.3631024930748], [61.23631724741216, 252.17340720221605], [57.07234290712931, 254.09141274238226], [52.723627350925796, 256.12509695290856], [48.13326724012247, 258.2824376731302], [43.24435923604024, 260.5714127423822], [38.0, 263.0]]) self.bezier_points2 = [0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1, 2, 1, 3] self.gt2 = np.array([[0, 0], [0, 1.5], [0, 3], [1, 0], [1, 1.5], [1, 3]]) self.invalid_input = [0, 1] def test_bezier2polygon(self): self.assertTrue( np.allclose(bezier2polygon(self.bezier_points1), self.gt1)) with self.assertRaises(AssertionError): bezier2polygon(self.bezier_points2, num_sample=-1) with self.assertRaises(AssertionError): bezier2polygon(self.invalid_input, num_sample=-1) class TestBboxJitter(unittest.TestCase): def test_bbox_jitter(self): dummy_points_x = [20, 120, 120, 20] dummy_points_y = [20, 20, 40, 40] kwargs = dict(jitter_ratio_x=0.0, jitter_ratio_y=0.0) with self.assertRaises(AssertionError): bbox_jitter([], dummy_points_y) with self.assertRaises(AssertionError): bbox_jitter(dummy_points_x, []) with self.assertRaises(AssertionError): bbox_jitter(dummy_points_x, dummy_points_y, jitter_ratio_x=1.) with self.assertRaises(AssertionError): bbox_jitter(dummy_points_x, dummy_points_y, jitter_ratio_y=1.) bbox_jitter(dummy_points_x, dummy_points_y, **kwargs) assert np.allclose(dummy_points_x, [20, 120, 120, 20]) assert np.allclose(dummy_points_y, [20, 20, 40, 40]) class TestIsOnSameLine(unittest.TestCase): def test_box_on_line(self): # regular boxes box1 = [0, 0, 1, 0, 1, 1, 0, 1] box2 = [2, 0.5, 3, 0.5, 3, 1.5, 2, 1.5] box3 = [4, 0.8, 5, 0.8, 5, 1.8, 4, 1.8] self.assertTrue(is_on_same_line(box1, box2, 0.5)) self.assertFalse(is_on_same_line(box1, box3, 0.5)) # irregular box4 box4 = [0, 0, 1, 1, 1, 2, 0, 1] box5 = [2, 1.5, 3, 1.5, 3, 2.5, 2, 2.5] box6 = [2, 1.6, 3, 1.6, 3, 2.6, 2, 2.6] self.assertTrue(is_on_same_line(box4, box5, 0.5)) self.assertFalse(is_on_same_line(box4, box6, 0.5)) class TestStitchBoxesIntoLines(unittest.TestCase): def test_stitch_boxes_into_lines(self): boxes = [ # regular boxes [0, 0, 1, 0, 1, 1, 0, 1], [2, 0.5, 3, 0.5, 3, 1.5, 2, 1.5], [3, 1.2, 4, 1.2, 4, 2.2, 3, 2.2], [5, 0.5, 6, 0.5, 6, 1.5, 5, 1.5], # irregular box [6, 1.5, 7, 1.25, 7, 1.75, 6, 1.75] ] raw_input = [{ 'box': boxes[i], 'text': str(i) } for i in range(len(boxes))] result = stitch_boxes_into_lines(raw_input, 1, 0.5) # Final lines: [0, 1], [2], [3, 4] # box 0, 1, 3, 4 are on the same line but box 3 is 2 pixels away from # box 1 # box 3 and 4 are on the same line since the length of overlapping part # >= 0.5 * the y-axis length of box 5 expected_result = [{ 'box': [0, 0, 3, 0, 3, 1.5, 0, 1.5], 'text': '0 1' }, { 'box': [3, 1.2, 4, 1.2, 4, 2.2, 3, 2.2], 'text': '2' }, { 'box': [5, 0.5, 7, 0.5, 7, 1.75, 5, 1.75], 'text': '3 4' }] result.sort(key=lambda x: x['box'][0]) expected_result.sort(key=lambda x: x['box'][0]) self.assertEqual(result, expected_result) class TestRescaleBbox(unittest.TestCase): def setUp(self) -> None: self.bbox = np.array([0, 0, 1, 1]) self.bboxes = np.array([[0, 0, 1, 1], [1, 1, 2, 2]]) self.scale = 2 def test_rescale_bbox(self): # mul rescaled_bbox = rescale_bbox(self.bbox, self.scale, mode='mul') self.assertTrue(np.allclose(rescaled_bbox, np.array([0, 0, 2, 2]))) # div rescaled_bbox = rescale_bbox(self.bbox, self.scale, mode='div') self.assertTrue(np.allclose(rescaled_bbox, np.array([0, 0, 0.5, 0.5]))) def test_rescale_bboxes(self): # mul rescaled_bboxes = rescale_bboxes(self.bboxes, self.scale, mode='mul') self.assertTrue( np.allclose(rescaled_bboxes, np.array([[0, 0, 2, 2], [2, 2, 4, 4]]))) # div rescaled_bboxes = rescale_bboxes(self.bboxes, self.scale, mode='div') self.assertTrue( np.allclose(rescaled_bboxes, np.array([[0, 0, 0.5, 0.5], [0.5, 0.5, 1, 1]])))