dictionary = dict( type='Dictionary', dict_file='{{ fileDirname }}/../../../dicts/lower_english_digits.txt', with_start=True, with_end=True, same_start_end=True, with_padding=False, with_unknown=False) model = dict( type='ABINet', backbone=dict(type='ResNetABI'), encoder=dict( type='ABIEncoder', n_layers=3, n_head=8, d_model=512, d_inner=2048, dropout=0.1, max_len=8 * 32, ), decoder=dict( type='ABIFuser', vision_decoder=dict( type='ABIVisionDecoder', in_channels=512, num_channels=64, attn_height=8, attn_width=32, attn_mode='nearest', init_cfg=dict(type='Xavier', layer='Conv2d')), module_loss=dict(type='ABIModuleLoss', letter_case='lower'), postprocessor=dict(type='AttentionPostprocessor'), dictionary=dictionary, max_seq_len=26, ), data_preprocessor=dict( type='TextRecogDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375])) train_pipeline = [ dict(type='LoadImageFromFile', ignore_empty=True, min_size=2), dict(type='LoadOCRAnnotations', with_text=True), dict(type='Resize', scale=(128, 32)), dict( type='RandomApply', prob=0.5, transforms=[ dict( type='RandomChoice', transforms=[ dict( type='RandomRotate', max_angle=15, ), dict( type='TorchVisionWrapper', op='RandomAffine', degrees=15, translate=(0.3, 0.3), scale=(0.5, 2.), shear=(-45, 45), ), dict( type='TorchVisionWrapper', op='RandomPerspective', distortion_scale=0.5, p=1, ), ]) ], ), dict( type='RandomApply', prob=0.25, transforms=[ dict(type='PyramidRescale'), dict( type='mmdet.Albu', transforms=[ dict(type='GaussNoise', var_limit=(20, 20), p=0.5), dict(type='MotionBlur', blur_limit=7, p=0.5), ]), ]), dict( type='RandomApply', prob=0.25, transforms=[ dict( type='TorchVisionWrapper', op='ColorJitter', brightness=0.5, saturation=0.5, contrast=0.5, hue=0.1), ]), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(128, 32)), # add loading annotation after ``Resize`` because ground truth # does not need to do resize data transform dict(type='LoadOCRAnnotations', with_text=True), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] tta_pipeline = [ dict(type='LoadImageFromFile'), dict( type='TestTimeAug', transforms=[ [ dict( type='ConditionApply', true_transforms=[ dict( type='ImgAugWrapper', args=[dict(cls='Rot90', k=0, keep_size=False)]) ], condition="results['img_shape'][1]