import math import torch from torch import Tensor, nn class PositionEmbeddingSine(nn.Module): """This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. Adapted from https://github.com/shannanyinxiang/SPTS. """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=True, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError('normalize should be True if scale is passed') if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, mask: Tensor): assert mask is not None not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange( self.num_pos_feats, dtype=torch.float32, device=mask.device) dim_t = self.temperature**(2 * torch.div(dim_t, 2, rounding_mode='floor') / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos