# This configuration prepares the ICDAR15 1811 and 2077 # version, and uses ICDAR15 2077 version by default. # Read https://arxiv.org/pdf/1904.01906.pdf for more info. data_root = 'data/icdar2015' cache_path = 'data/cache' train_preparer = dict( obtainer=dict( type='NaiveDataObtainer', cache_path=cache_path, files=[ dict( url='https://rrc.cvc.uab.es/downloads/' 'ch4_training_word_images_gt.zip', save_name='ic15_textrecog_train_img_gt.zip', md5='600caf8c6a64a3dcf638839820edcca9', content=['image', 'annotation'], mapping=[[ 'ic15_textrecog_train_img_gt/gt.txt', 'annotations/train.txt' ], ['ic15_textrecog_train_img_gt', 'textrecog_imgs/train']]), ]), gatherer=dict(type='MonoGatherer', ann_name='train.txt'), parser=dict(type='ICDARTxtTextRecogAnnParser', encoding='utf-8-sig'), packer=dict(type='TextRecogPacker'), dumper=dict(type='JsonDumper')) test_preparer = dict( obtainer=dict( type='NaiveDataObtainer', cache_path=cache_path, files=[ dict( url='https://rrc.cvc.uab.es/downloads/' 'ch4_test_word_images_gt.zip', save_name='ic15_textrecog_test_img.zip', md5='d7a71585f4cc69f89edbe534e7706d5d', content=['image'], mapping=[['ic15_textrecog_test_img', 'textrecog_imgs/test']]), dict( url='https://rrc.cvc.uab.es/downloads/' 'Challenge4_Test_Task3_GT.txt', save_name='ic15_textrecog_test_gt.txt', md5='d7a71585f4cc69f89edbe534e7706d5d', content=['annotation'], mapping=[[ 'ic15_textrecog_test_gt.txt', 'annotations/test.txt' ]]), # 3. The 1811 version discards non-alphanumeric character images # and some extremely rotated, perspective-shifted, and curved # images for evaluation dict( url='https://download.openmmlab.com/mmocr/data/1.x/recog/' 'icdar_2015/textrecog_test_1811.json', save_name='textrecog_test_1811.json', md5='8d218ef1c37540ea959e22eeabc79ae4', content=['annotation'], ), ]), gatherer=dict(type='MonoGatherer', ann_name='test.txt'), parser=dict(type='ICDARTxtTextRecogAnnParser', encoding='utf-8-sig'), packer=dict(type='TextRecogPacker'), dumper=dict(type='JsonDumper')) delete = [ 'annotations', 'ic15_textrecog_train_img_gt', 'ic15_textrecog_test_img' ] config_generator = dict( type='TextRecogConfigGenerator', test_anns=[ dict(ann_file='textrecog_test.json'), dict(dataset_postfix='1811', ann_file='textrecog_test_1811.json') ])