import gradio as gr from pipeline.run_pipeline import * ''' 时间优化 并发优化 ''' # from run import * # ''' # 把一些文件移动到此文件路径下 # ''' # text = "A person is cutting a birthday cake with two red candles that spell out \"21\". The surface of the cake is round, and there is a balloon in the room. The person is using a silver knife to cut the cake." # image_path = "/newdisk3/wcx/val2014/COCO_val2014_000000297425.jpg" pipeline = Pipeline(type="image-to-text", api_key="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") # res,claim_list = pipeline.run(text=text, image_path=image_path,type="image-to-text") # print(res) def get_response(text, filepath, type): res, claim_list = pipeline.run(text=text, image_path=filepath, type=type) return claim_list, res demo = gr.Interface( fn=get_response, inputs=[gr.Textbox(placeholder="Input I2T model's response or T2I model's prompt", label="text input"), gr.Image(type="filepath", label="image input"), gr.Radio(['image-to-text','text-to-image'], label='task type', value='image-to-text')], outputs=[gr.Textbox(label="claim list"), gr.Textbox(label="detect results")], ) demo.queue().launch(share=True)