# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import numpy as np import torch from mmengine.structures import InstanceData from mmocr.structures import TextDetDataSample class TestTextDetDataSample(TestCase): def _equal(self, a, b): if isinstance(a, (torch.Tensor, np.ndarray)): return (a == b).all() else: return a == b def test_init(self): meta_info = dict( img_size=[256, 256], scale_factor=np.array([1.5, 1.5]), img_shape=torch.rand(4)) det_data_sample = TextDetDataSample(metainfo=meta_info) assert 'img_size' in det_data_sample self.assertListEqual(det_data_sample.img_size, [256, 256]) self.assertListEqual(det_data_sample.get('img_size'), [256, 256]) def test_setter(self): det_data_sample = TextDetDataSample() # test gt_instances gt_instances_data = dict( bboxes=torch.rand(4, 4), labels=torch.rand(4), masks=np.random.rand(4, 2, 2)) gt_instances = InstanceData(**gt_instances_data) det_data_sample.gt_instances = gt_instances assert 'gt_instances' in det_data_sample assert self._equal(det_data_sample.gt_instances.bboxes, gt_instances_data['bboxes']) assert self._equal(det_data_sample.gt_instances.labels, gt_instances_data['labels']) assert self._equal(det_data_sample.gt_instances.masks, gt_instances_data['masks']) # test pred_instances pred_instances_data = dict( bboxes=torch.rand(2, 4), labels=torch.rand(2), masks=np.random.rand(2, 2, 2)) pred_instances = InstanceData(**pred_instances_data) det_data_sample.pred_instances = pred_instances assert 'pred_instances' in det_data_sample assert self._equal(det_data_sample.pred_instances.bboxes, pred_instances_data['bboxes']) assert self._equal(det_data_sample.pred_instances.labels, pred_instances_data['labels']) assert self._equal(det_data_sample.pred_instances.masks, pred_instances_data['masks']) # test type error with self.assertRaises(AssertionError): det_data_sample.gt_instances = torch.rand(2, 4) with self.assertRaises(AssertionError): det_data_sample.pred_instances = torch.rand(2, 4) def test_deleter(self): gt_instances_data = dict( bboxes=torch.rand(4, 4), labels=torch.rand(4), masks=np.random.rand(4, 2, 2)) det_data_sample = TextDetDataSample() gt_instances = InstanceData(data=gt_instances_data) det_data_sample.gt_instances = gt_instances assert 'gt_instances' in det_data_sample del det_data_sample.gt_instances assert 'gt_instances' not in det_data_sample det_data_sample.pred_instances = gt_instances assert 'pred_instances' in det_data_sample del det_data_sample.pred_instances assert 'pred_instances' not in det_data_sample