default_scope = 'mmocr' env_cfg = dict( cudnn_benchmark=False, mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), dist_cfg=dict(backend='nccl'), ) randomness = dict(seed=None) default_hooks = dict( timer=dict(type='IterTimerHook'), logger=dict(type='LoggerHook', interval=100), param_scheduler=dict(type='ParamSchedulerHook'), checkpoint=dict(type='CheckpointHook', interval=1), sampler_seed=dict(type='DistSamplerSeedHook'), sync_buffer=dict(type='SyncBuffersHook'), visualization=dict( type='VisualizationHook', interval=1, enable=False, show=False, draw_gt=False, draw_pred=False), ) # Logging log_level = 'INFO' log_processor = dict(type='LogProcessor', window_size=10, by_epoch=True) load_from = None resume = False # Evaluation val_evaluator = dict( type='MultiDatasetsEvaluator', metrics=[ dict( type='WordMetric', mode=['exact', 'ignore_case', 'ignore_case_symbol']), dict(type='CharMetric') ], dataset_prefixes=None) test_evaluator = val_evaluator # Visualization vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='TextRecogLocalVisualizer', name='visualizer', vis_backends=vis_backends) tta_model = dict(type='EncoderDecoderRecognizerTTAModel')