Spaces:
Sleeping
Sleeping
# Natural Language Toolkit: Punkt sentence tokenizer | |
# | |
# Copyright (C) 2001-2023 NLTK Project | |
# Algorithm: Kiss & Strunk (2006) | |
# Author: Willy <[email protected]> (original Python port) | |
# Steven Bird <[email protected]> (additions) | |
# Edward Loper <[email protected]> (rewrite) | |
# Joel Nothman <[email protected]> (almost rewrite) | |
# Arthur Darcet <[email protected]> (fixes) | |
# Tom Aarsen <> (tackle ReDoS & performance issues) | |
# URL: <https://www.nltk.org/> | |
# For license information, see LICENSE.TXT | |
r""" | |
Punkt Sentence Tokenizer | |
This tokenizer divides a text into a list of sentences | |
by using an unsupervised algorithm to build a model for abbreviation | |
words, collocations, and words that start sentences. It must be | |
trained on a large collection of plaintext in the target language | |
before it can be used. | |
The NLTK data package includes a pre-trained Punkt tokenizer for | |
English. | |
>>> import nltk.data | |
>>> text = ''' | |
... Punkt knows that the periods in Mr. Smith and Johann S. Bach | |
... do not mark sentence boundaries. And sometimes sentences | |
... can start with non-capitalized words. i is a good variable | |
... name. | |
... ''' | |
>>> sent_detector = nltk.data.load('tokenizers/punkt/english.pickle') | |
>>> print('\n-----\n'.join(sent_detector.tokenize(text.strip()))) | |
Punkt knows that the periods in Mr. Smith and Johann S. Bach | |
do not mark sentence boundaries. | |
----- | |
And sometimes sentences | |
can start with non-capitalized words. | |
----- | |
i is a good variable | |
name. | |
(Note that whitespace from the original text, including newlines, is | |
retained in the output.) | |
Punctuation following sentences is also included by default | |
(from NLTK 3.0 onwards). It can be excluded with the realign_boundaries | |
flag. | |
>>> text = ''' | |
... (How does it deal with this parenthesis?) "It should be part of the | |
... previous sentence." "(And the same with this one.)" ('And this one!') | |
... "('(And (this)) '?)" [(and this. )] | |
... ''' | |
>>> print('\n-----\n'.join( | |
... sent_detector.tokenize(text.strip()))) | |
(How does it deal with this parenthesis?) | |
----- | |
"It should be part of the | |
previous sentence." | |
----- | |
"(And the same with this one.)" | |
----- | |
('And this one!') | |
----- | |
"('(And (this)) '?)" | |
----- | |
[(and this. )] | |
>>> print('\n-----\n'.join( | |
... sent_detector.tokenize(text.strip(), realign_boundaries=False))) | |
(How does it deal with this parenthesis? | |
----- | |
) "It should be part of the | |
previous sentence. | |
----- | |
" "(And the same with this one. | |
----- | |
)" ('And this one! | |
----- | |
') | |
"('(And (this)) '? | |
----- | |
)" [(and this. | |
----- | |
)] | |
However, Punkt is designed to learn parameters (a list of abbreviations, etc.) | |
unsupervised from a corpus similar to the target domain. The pre-packaged models | |
may therefore be unsuitable: use ``PunktSentenceTokenizer(text)`` to learn | |
parameters from the given text. | |
:class:`.PunktTrainer` learns parameters such as a list of abbreviations | |
(without supervision) from portions of text. Using a ``PunktTrainer`` directly | |
allows for incremental training and modification of the hyper-parameters used | |
to decide what is considered an abbreviation, etc. | |
The algorithm for this tokenizer is described in:: | |
Kiss, Tibor and Strunk, Jan (2006): Unsupervised Multilingual Sentence | |
Boundary Detection. Computational Linguistics 32: 485-525. | |
""" | |
# TODO: Make orthographic heuristic less susceptible to overtraining | |
# TODO: Frequent sentence starters optionally exclude always-capitalised words | |
# FIXME: Problem with ending string with e.g. '!!!' -> '!! !' | |
import math | |
import re | |
import string | |
from collections import defaultdict | |
from typing import Any, Dict, Iterator, List, Match, Optional, Tuple, Union | |
from nltk.probability import FreqDist | |
from nltk.tokenize.api import TokenizerI | |
###################################################################### | |
# { Orthographic Context Constants | |
###################################################################### | |
# The following constants are used to describe the orthographic | |
# contexts in which a word can occur. BEG=beginning, MID=middle, | |
# UNK=unknown, UC=uppercase, LC=lowercase, NC=no case. | |
_ORTHO_BEG_UC = 1 << 1 | |
"""Orthographic context: beginning of a sentence with upper case.""" | |
_ORTHO_MID_UC = 1 << 2 | |
"""Orthographic context: middle of a sentence with upper case.""" | |
_ORTHO_UNK_UC = 1 << 3 | |
"""Orthographic context: unknown position in a sentence with upper case.""" | |
_ORTHO_BEG_LC = 1 << 4 | |
"""Orthographic context: beginning of a sentence with lower case.""" | |
_ORTHO_MID_LC = 1 << 5 | |
"""Orthographic context: middle of a sentence with lower case.""" | |
_ORTHO_UNK_LC = 1 << 6 | |
"""Orthographic context: unknown position in a sentence with lower case.""" | |
_ORTHO_UC = _ORTHO_BEG_UC + _ORTHO_MID_UC + _ORTHO_UNK_UC | |
"""Orthographic context: occurs with upper case.""" | |
_ORTHO_LC = _ORTHO_BEG_LC + _ORTHO_MID_LC + _ORTHO_UNK_LC | |
"""Orthographic context: occurs with lower case.""" | |
_ORTHO_MAP = { | |
("initial", "upper"): _ORTHO_BEG_UC, | |
("internal", "upper"): _ORTHO_MID_UC, | |
("unknown", "upper"): _ORTHO_UNK_UC, | |
("initial", "lower"): _ORTHO_BEG_LC, | |
("internal", "lower"): _ORTHO_MID_LC, | |
("unknown", "lower"): _ORTHO_UNK_LC, | |
} | |
"""A map from context position and first-letter case to the | |
appropriate orthographic context flag.""" | |
# } (end orthographic context constants) | |
###################################################################### | |
###################################################################### | |
# { Decision reasons for debugging | |
###################################################################### | |
REASON_DEFAULT_DECISION = "default decision" | |
REASON_KNOWN_COLLOCATION = "known collocation (both words)" | |
REASON_ABBR_WITH_ORTHOGRAPHIC_HEURISTIC = "abbreviation + orthographic heuristic" | |
REASON_ABBR_WITH_SENTENCE_STARTER = "abbreviation + frequent sentence starter" | |
REASON_INITIAL_WITH_ORTHOGRAPHIC_HEURISTIC = "initial + orthographic heuristic" | |
REASON_NUMBER_WITH_ORTHOGRAPHIC_HEURISTIC = "initial + orthographic heuristic" | |
REASON_INITIAL_WITH_SPECIAL_ORTHOGRAPHIC_HEURISTIC = ( | |
"initial + special orthographic heuristic" | |
) | |
# } (end decision reasons for debugging) | |
###################################################################### | |
###################################################################### | |
# { Language-dependent variables | |
###################################################################### | |
class PunktLanguageVars: | |
""" | |
Stores variables, mostly regular expressions, which may be | |
language-dependent for correct application of the algorithm. | |
An extension of this class may modify its properties to suit | |
a language other than English; an instance can then be passed | |
as an argument to PunktSentenceTokenizer and PunktTrainer | |
constructors. | |
""" | |
__slots__ = ("_re_period_context", "_re_word_tokenizer") | |
def __getstate__(self): | |
# All modifications to the class are performed by inheritance. | |
# Non-default parameters to be pickled must be defined in the inherited | |
# class. | |
return 1 | |
def __setstate__(self, state): | |
return 1 | |
sent_end_chars = (".", "?", "!") | |
"""Characters which are candidates for sentence boundaries""" | |
def _re_sent_end_chars(self): | |
return "[%s]" % re.escape("".join(self.sent_end_chars)) | |
internal_punctuation = ",:;" # might want to extend this.. | |
"""sentence internal punctuation, which indicates an abbreviation if | |
preceded by a period-final token.""" | |
re_boundary_realignment = re.compile(r'["\')\]}]+?(?:\s+|(?=--)|$)', re.MULTILINE) | |
"""Used to realign punctuation that should be included in a sentence | |
although it follows the period (or ?, !).""" | |
_re_word_start = r"[^\(\"\`{\[:;&\#\*@\)}\]\-,]" | |
"""Excludes some characters from starting word tokens""" | |
def _re_non_word_chars(self): | |
return r"(?:[)\";}\]\*:@\'\({\[%s])" % re.escape( | |
"".join(set(self.sent_end_chars) - {"."}) | |
) | |
"""Characters that cannot appear within words""" | |
_re_multi_char_punct = r"(?:\-{2,}|\.{2,}|(?:\.\s){2,}\.)" | |
"""Hyphen and ellipsis are multi-character punctuation""" | |
_word_tokenize_fmt = r"""( | |
%(MultiChar)s | |
| | |
(?=%(WordStart)s)\S+? # Accept word characters until end is found | |
(?= # Sequences marking a word's end | |
\s| # White-space | |
$| # End-of-string | |
%(NonWord)s|%(MultiChar)s| # Punctuation | |
,(?=$|\s|%(NonWord)s|%(MultiChar)s) # Comma if at end of word | |
) | |
| | |
\S | |
)""" | |
"""Format of a regular expression to split punctuation from words, | |
excluding period.""" | |
def _word_tokenizer_re(self): | |
"""Compiles and returns a regular expression for word tokenization""" | |
try: | |
return self._re_word_tokenizer | |
except AttributeError: | |
self._re_word_tokenizer = re.compile( | |
self._word_tokenize_fmt | |
% { | |
"NonWord": self._re_non_word_chars, | |
"MultiChar": self._re_multi_char_punct, | |
"WordStart": self._re_word_start, | |
}, | |
re.UNICODE | re.VERBOSE, | |
) | |
return self._re_word_tokenizer | |
def word_tokenize(self, s): | |
"""Tokenize a string to split off punctuation other than periods""" | |
return self._word_tokenizer_re().findall(s) | |
_period_context_fmt = r""" | |
%(SentEndChars)s # a potential sentence ending | |
(?=(?P<after_tok> | |
%(NonWord)s # either other punctuation | |
| | |
\s+(?P<next_tok>\S+) # or whitespace and some other token | |
))""" | |
"""Format of a regular expression to find contexts including possible | |
sentence boundaries. Matches token which the possible sentence boundary | |
ends, and matches the following token within a lookahead expression.""" | |
def period_context_re(self): | |
"""Compiles and returns a regular expression to find contexts | |
including possible sentence boundaries.""" | |
try: | |
return self._re_period_context | |
except: | |
self._re_period_context = re.compile( | |
self._period_context_fmt | |
% { | |
"NonWord": self._re_non_word_chars, | |
"SentEndChars": self._re_sent_end_chars, | |
}, | |
re.UNICODE | re.VERBOSE, | |
) | |
return self._re_period_context | |
_re_non_punct = re.compile(r"[^\W\d]", re.UNICODE) | |
"""Matches token types that are not merely punctuation. (Types for | |
numeric tokens are changed to ##number## and hence contain alpha.)""" | |
# } | |
###################################################################### | |
# //////////////////////////////////////////////////////////// | |
# { Helper Functions | |
# //////////////////////////////////////////////////////////// | |
def _pair_iter(iterator): | |
""" | |
Yields pairs of tokens from the given iterator such that each input | |
token will appear as the first element in a yielded tuple. The last | |
pair will have None as its second element. | |
""" | |
iterator = iter(iterator) | |
try: | |
prev = next(iterator) | |
except StopIteration: | |
return | |
for el in iterator: | |
yield (prev, el) | |
prev = el | |
yield (prev, None) | |
###################################################################### | |
# { Punkt Parameters | |
###################################################################### | |
class PunktParameters: | |
"""Stores data used to perform sentence boundary detection with Punkt.""" | |
def __init__(self): | |
self.abbrev_types = set() | |
"""A set of word types for known abbreviations.""" | |
self.collocations = set() | |
"""A set of word type tuples for known common collocations | |
where the first word ends in a period. E.g., ('S.', 'Bach') | |
is a common collocation in a text that discusses 'Johann | |
S. Bach'. These count as negative evidence for sentence | |
boundaries.""" | |
self.sent_starters = set() | |
"""A set of word types for words that often appear at the | |
beginning of sentences.""" | |
self.ortho_context = defaultdict(int) | |
"""A dictionary mapping word types to the set of orthographic | |
contexts that word type appears in. Contexts are represented | |
by adding orthographic context flags: ...""" | |
def clear_abbrevs(self): | |
self.abbrev_types = set() | |
def clear_collocations(self): | |
self.collocations = set() | |
def clear_sent_starters(self): | |
self.sent_starters = set() | |
def clear_ortho_context(self): | |
self.ortho_context = defaultdict(int) | |
def add_ortho_context(self, typ, flag): | |
self.ortho_context[typ] |= flag | |
def _debug_ortho_context(self, typ): | |
context = self.ortho_context[typ] | |
if context & _ORTHO_BEG_UC: | |
yield "BEG-UC" | |
if context & _ORTHO_MID_UC: | |
yield "MID-UC" | |
if context & _ORTHO_UNK_UC: | |
yield "UNK-UC" | |
if context & _ORTHO_BEG_LC: | |
yield "BEG-LC" | |
if context & _ORTHO_MID_LC: | |
yield "MID-LC" | |
if context & _ORTHO_UNK_LC: | |
yield "UNK-LC" | |
###################################################################### | |
# { PunktToken | |
###################################################################### | |
class PunktToken: | |
"""Stores a token of text with annotations produced during | |
sentence boundary detection.""" | |
_properties = ["parastart", "linestart", "sentbreak", "abbr", "ellipsis"] | |
__slots__ = ["tok", "type", "period_final"] + _properties | |
def __init__(self, tok, **params): | |
self.tok = tok | |
self.type = self._get_type(tok) | |
self.period_final = tok.endswith(".") | |
for prop in self._properties: | |
setattr(self, prop, None) | |
for k in params: | |
setattr(self, k, params[k]) | |
# //////////////////////////////////////////////////////////// | |
# { Regular expressions for properties | |
# //////////////////////////////////////////////////////////// | |
# Note: [A-Za-z] is approximated by [^\W\d] in the general case. | |
_RE_ELLIPSIS = re.compile(r"\.\.+$") | |
_RE_NUMERIC = re.compile(r"^-?[\.,]?\d[\d,\.-]*\.?$") | |
_RE_INITIAL = re.compile(r"[^\W\d]\.$", re.UNICODE) | |
_RE_ALPHA = re.compile(r"[^\W\d]+$", re.UNICODE) | |
# //////////////////////////////////////////////////////////// | |
# { Derived properties | |
# //////////////////////////////////////////////////////////// | |
def _get_type(self, tok): | |
"""Returns a case-normalized representation of the token.""" | |
return self._RE_NUMERIC.sub("##number##", tok.lower()) | |
def type_no_period(self): | |
""" | |
The type with its final period removed if it has one. | |
""" | |
if len(self.type) > 1 and self.type[-1] == ".": | |
return self.type[:-1] | |
return self.type | |
def type_no_sentperiod(self): | |
""" | |
The type with its final period removed if it is marked as a | |
sentence break. | |
""" | |
if self.sentbreak: | |
return self.type_no_period | |
return self.type | |
def first_upper(self): | |
"""True if the token's first character is uppercase.""" | |
return self.tok[0].isupper() | |
def first_lower(self): | |
"""True if the token's first character is lowercase.""" | |
return self.tok[0].islower() | |
def first_case(self): | |
if self.first_lower: | |
return "lower" | |
if self.first_upper: | |
return "upper" | |
return "none" | |
def is_ellipsis(self): | |
"""True if the token text is that of an ellipsis.""" | |
return self._RE_ELLIPSIS.match(self.tok) | |
def is_number(self): | |
"""True if the token text is that of a number.""" | |
return self.type.startswith("##number##") | |
def is_initial(self): | |
"""True if the token text is that of an initial.""" | |
return self._RE_INITIAL.match(self.tok) | |
def is_alpha(self): | |
"""True if the token text is all alphabetic.""" | |
return self._RE_ALPHA.match(self.tok) | |
def is_non_punct(self): | |
"""True if the token is either a number or is alphabetic.""" | |
return _re_non_punct.search(self.type) | |
# //////////////////////////////////////////////////////////// | |
# { String representation | |
# //////////////////////////////////////////////////////////// | |
def __repr__(self): | |
""" | |
A string representation of the token that can reproduce it | |
with eval(), which lists all the token's non-default | |
annotations. | |
""" | |
typestr = " type=%s," % repr(self.type) if self.type != self.tok else "" | |
propvals = ", ".join( | |
f"{p}={repr(getattr(self, p))}" | |
for p in self._properties | |
if getattr(self, p) | |
) | |
return "{}({},{} {})".format( | |
self.__class__.__name__, | |
repr(self.tok), | |
typestr, | |
propvals, | |
) | |
def __str__(self): | |
""" | |
A string representation akin to that used by Kiss and Strunk. | |
""" | |
res = self.tok | |
if self.abbr: | |
res += "<A>" | |
if self.ellipsis: | |
res += "<E>" | |
if self.sentbreak: | |
res += "<S>" | |
return res | |
###################################################################### | |
# { Punkt base class | |
###################################################################### | |
class PunktBaseClass: | |
""" | |
Includes common components of PunktTrainer and PunktSentenceTokenizer. | |
""" | |
def __init__(self, lang_vars=None, token_cls=PunktToken, params=None): | |
if lang_vars is None: | |
lang_vars = PunktLanguageVars() | |
if params is None: | |
params = PunktParameters() | |
self._params = params | |
self._lang_vars = lang_vars | |
self._Token = token_cls | |
"""The collection of parameters that determines the behavior | |
of the punkt tokenizer.""" | |
# //////////////////////////////////////////////////////////// | |
# { Word tokenization | |
# //////////////////////////////////////////////////////////// | |
def _tokenize_words(self, plaintext): | |
""" | |
Divide the given text into tokens, using the punkt word | |
segmentation regular expression, and generate the resulting list | |
of tokens augmented as three-tuples with two boolean values for whether | |
the given token occurs at the start of a paragraph or a new line, | |
respectively. | |
""" | |
parastart = False | |
for line in plaintext.split("\n"): | |
if line.strip(): | |
line_toks = iter(self._lang_vars.word_tokenize(line)) | |
try: | |
tok = next(line_toks) | |
except StopIteration: | |
continue | |
yield self._Token(tok, parastart=parastart, linestart=True) | |
parastart = False | |
for tok in line_toks: | |
yield self._Token(tok) | |
else: | |
parastart = True | |
# //////////////////////////////////////////////////////////// | |
# { Annotation Procedures | |
# //////////////////////////////////////////////////////////// | |
def _annotate_first_pass( | |
self, tokens: Iterator[PunktToken] | |
) -> Iterator[PunktToken]: | |
""" | |
Perform the first pass of annotation, which makes decisions | |
based purely based on the word type of each word: | |
- '?', '!', and '.' are marked as sentence breaks. | |
- sequences of two or more periods are marked as ellipsis. | |
- any word ending in '.' that's a known abbreviation is | |
marked as an abbreviation. | |
- any other word ending in '.' is marked as a sentence break. | |
Return these annotations as a tuple of three sets: | |
- sentbreak_toks: The indices of all sentence breaks. | |
- abbrev_toks: The indices of all abbreviations. | |
- ellipsis_toks: The indices of all ellipsis marks. | |
""" | |
for aug_tok in tokens: | |
self._first_pass_annotation(aug_tok) | |
yield aug_tok | |
def _first_pass_annotation(self, aug_tok: PunktToken) -> None: | |
""" | |
Performs type-based annotation on a single token. | |
""" | |
tok = aug_tok.tok | |
if tok in self._lang_vars.sent_end_chars: | |
aug_tok.sentbreak = True | |
elif aug_tok.is_ellipsis: | |
aug_tok.ellipsis = True | |
elif aug_tok.period_final and not tok.endswith(".."): | |
if ( | |
tok[:-1].lower() in self._params.abbrev_types | |
or tok[:-1].lower().split("-")[-1] in self._params.abbrev_types | |
): | |
aug_tok.abbr = True | |
else: | |
aug_tok.sentbreak = True | |
return | |
###################################################################### | |
# { Punkt Trainer | |
###################################################################### | |
class PunktTrainer(PunktBaseClass): | |
"""Learns parameters used in Punkt sentence boundary detection.""" | |
def __init__( | |
self, train_text=None, verbose=False, lang_vars=None, token_cls=PunktToken | |
): | |
PunktBaseClass.__init__(self, lang_vars=lang_vars, token_cls=token_cls) | |
self._type_fdist = FreqDist() | |
"""A frequency distribution giving the frequency of each | |
case-normalized token type in the training data.""" | |
self._num_period_toks = 0 | |
"""The number of words ending in period in the training data.""" | |
self._collocation_fdist = FreqDist() | |
"""A frequency distribution giving the frequency of all | |
bigrams in the training data where the first word ends in a | |
period. Bigrams are encoded as tuples of word types. | |
Especially common collocations are extracted from this | |
frequency distribution, and stored in | |
``_params``.``collocations <PunktParameters.collocations>``.""" | |
self._sent_starter_fdist = FreqDist() | |
"""A frequency distribution giving the frequency of all words | |
that occur at the training data at the beginning of a sentence | |
(after the first pass of annotation). Especially common | |
sentence starters are extracted from this frequency | |
distribution, and stored in ``_params.sent_starters``. | |
""" | |
self._sentbreak_count = 0 | |
"""The total number of sentence breaks identified in training, used for | |
calculating the frequent sentence starter heuristic.""" | |
self._finalized = True | |
"""A flag as to whether the training has been finalized by finding | |
collocations and sentence starters, or whether finalize_training() | |
still needs to be called.""" | |
if train_text: | |
self.train(train_text, verbose, finalize=True) | |
def get_params(self): | |
""" | |
Calculates and returns parameters for sentence boundary detection as | |
derived from training.""" | |
if not self._finalized: | |
self.finalize_training() | |
return self._params | |
# //////////////////////////////////////////////////////////// | |
# { Customization Variables | |
# //////////////////////////////////////////////////////////// | |
ABBREV = 0.3 | |
"""cut-off value whether a 'token' is an abbreviation""" | |
IGNORE_ABBREV_PENALTY = False | |
"""allows the disabling of the abbreviation penalty heuristic, which | |
exponentially disadvantages words that are found at times without a | |
final period.""" | |
ABBREV_BACKOFF = 5 | |
"""upper cut-off for Mikheev's(2002) abbreviation detection algorithm""" | |
COLLOCATION = 7.88 | |
"""minimal log-likelihood value that two tokens need to be considered | |
as a collocation""" | |
SENT_STARTER = 30 | |
"""minimal log-likelihood value that a token requires to be considered | |
as a frequent sentence starter""" | |
INCLUDE_ALL_COLLOCS = False | |
"""this includes as potential collocations all word pairs where the first | |
word ends in a period. It may be useful in corpora where there is a lot | |
of variation that makes abbreviations like Mr difficult to identify.""" | |
INCLUDE_ABBREV_COLLOCS = False | |
"""this includes as potential collocations all word pairs where the first | |
word is an abbreviation. Such collocations override the orthographic | |
heuristic, but not the sentence starter heuristic. This is overridden by | |
INCLUDE_ALL_COLLOCS, and if both are false, only collocations with initials | |
and ordinals are considered.""" | |
"""""" | |
MIN_COLLOC_FREQ = 1 | |
"""this sets a minimum bound on the number of times a bigram needs to | |
appear before it can be considered a collocation, in addition to log | |
likelihood statistics. This is useful when INCLUDE_ALL_COLLOCS is True.""" | |
# //////////////////////////////////////////////////////////// | |
# { Training.. | |
# //////////////////////////////////////////////////////////// | |
def train(self, text, verbose=False, finalize=True): | |
""" | |
Collects training data from a given text. If finalize is True, it | |
will determine all the parameters for sentence boundary detection. If | |
not, this will be delayed until get_params() or finalize_training() is | |
called. If verbose is True, abbreviations found will be listed. | |
""" | |
# Break the text into tokens; record which token indices correspond to | |
# line starts and paragraph starts; and determine their types. | |
self._train_tokens(self._tokenize_words(text), verbose) | |
if finalize: | |
self.finalize_training(verbose) | |
def train_tokens(self, tokens, verbose=False, finalize=True): | |
""" | |
Collects training data from a given list of tokens. | |
""" | |
self._train_tokens((self._Token(t) for t in tokens), verbose) | |
if finalize: | |
self.finalize_training(verbose) | |
def _train_tokens(self, tokens, verbose): | |
self._finalized = False | |
# Ensure tokens are a list | |
tokens = list(tokens) | |
# Find the frequency of each case-normalized type. (Don't | |
# strip off final periods.) Also keep track of the number of | |
# tokens that end in periods. | |
for aug_tok in tokens: | |
self._type_fdist[aug_tok.type] += 1 | |
if aug_tok.period_final: | |
self._num_period_toks += 1 | |
# Look for new abbreviations, and for types that no longer are | |
unique_types = self._unique_types(tokens) | |
for abbr, score, is_add in self._reclassify_abbrev_types(unique_types): | |
if score >= self.ABBREV: | |
if is_add: | |
self._params.abbrev_types.add(abbr) | |
if verbose: | |
print(f" Abbreviation: [{score:6.4f}] {abbr}") | |
else: | |
if not is_add: | |
self._params.abbrev_types.remove(abbr) | |
if verbose: | |
print(f" Removed abbreviation: [{score:6.4f}] {abbr}") | |
# Make a preliminary pass through the document, marking likely | |
# sentence breaks, abbreviations, and ellipsis tokens. | |
tokens = list(self._annotate_first_pass(tokens)) | |
# Check what contexts each word type can appear in, given the | |
# case of its first letter. | |
self._get_orthography_data(tokens) | |
# We need total number of sentence breaks to find sentence starters | |
self._sentbreak_count += self._get_sentbreak_count(tokens) | |
# The remaining heuristics relate to pairs of tokens where the first | |
# ends in a period. | |
for aug_tok1, aug_tok2 in _pair_iter(tokens): | |
if not aug_tok1.period_final or not aug_tok2: | |
continue | |
# Is the first token a rare abbreviation? | |
if self._is_rare_abbrev_type(aug_tok1, aug_tok2): | |
self._params.abbrev_types.add(aug_tok1.type_no_period) | |
if verbose: | |
print(" Rare Abbrev: %s" % aug_tok1.type) | |
# Does second token have a high likelihood of starting a sentence? | |
if self._is_potential_sent_starter(aug_tok2, aug_tok1): | |
self._sent_starter_fdist[aug_tok2.type] += 1 | |
# Is this bigram a potential collocation? | |
if self._is_potential_collocation(aug_tok1, aug_tok2): | |
self._collocation_fdist[ | |
(aug_tok1.type_no_period, aug_tok2.type_no_sentperiod) | |
] += 1 | |
def _unique_types(self, tokens): | |
return {aug_tok.type for aug_tok in tokens} | |
def finalize_training(self, verbose=False): | |
""" | |
Uses data that has been gathered in training to determine likely | |
collocations and sentence starters. | |
""" | |
self._params.clear_sent_starters() | |
for typ, log_likelihood in self._find_sent_starters(): | |
self._params.sent_starters.add(typ) | |
if verbose: | |
print(f" Sent Starter: [{log_likelihood:6.4f}] {typ!r}") | |
self._params.clear_collocations() | |
for (typ1, typ2), log_likelihood in self._find_collocations(): | |
self._params.collocations.add((typ1, typ2)) | |
if verbose: | |
print(f" Collocation: [{log_likelihood:6.4f}] {typ1!r}+{typ2!r}") | |
self._finalized = True | |
# //////////////////////////////////////////////////////////// | |
# { Overhead reduction | |
# //////////////////////////////////////////////////////////// | |
def freq_threshold( | |
self, ortho_thresh=2, type_thresh=2, colloc_thres=2, sentstart_thresh=2 | |
): | |
""" | |
Allows memory use to be reduced after much training by removing data | |
about rare tokens that are unlikely to have a statistical effect with | |
further training. Entries occurring above the given thresholds will be | |
retained. | |
""" | |
if ortho_thresh > 1: | |
old_oc = self._params.ortho_context | |
self._params.clear_ortho_context() | |
for tok in self._type_fdist: | |
count = self._type_fdist[tok] | |
if count >= ortho_thresh: | |
self._params.ortho_context[tok] = old_oc[tok] | |
self._type_fdist = self._freq_threshold(self._type_fdist, type_thresh) | |
self._collocation_fdist = self._freq_threshold( | |
self._collocation_fdist, colloc_thres | |
) | |
self._sent_starter_fdist = self._freq_threshold( | |
self._sent_starter_fdist, sentstart_thresh | |
) | |
def _freq_threshold(self, fdist, threshold): | |
""" | |
Returns a FreqDist containing only data with counts below a given | |
threshold, as well as a mapping (None -> count_removed). | |
""" | |
# We assume that there is more data below the threshold than above it | |
# and so create a new FreqDist rather than working in place. | |
res = FreqDist() | |
num_removed = 0 | |
for tok in fdist: | |
count = fdist[tok] | |
if count < threshold: | |
num_removed += 1 | |
else: | |
res[tok] += count | |
res[None] += num_removed | |
return res | |
# //////////////////////////////////////////////////////////// | |
# { Orthographic data | |
# //////////////////////////////////////////////////////////// | |
def _get_orthography_data(self, tokens): | |
""" | |
Collect information about whether each token type occurs | |
with different case patterns (i) overall, (ii) at | |
sentence-initial positions, and (iii) at sentence-internal | |
positions. | |
""" | |
# 'initial' or 'internal' or 'unknown' | |
context = "internal" | |
tokens = list(tokens) | |
for aug_tok in tokens: | |
# If we encounter a paragraph break, then it's a good sign | |
# that it's a sentence break. But err on the side of | |
# caution (by not positing a sentence break) if we just | |
# saw an abbreviation. | |
if aug_tok.parastart and context != "unknown": | |
context = "initial" | |
# If we're at the beginning of a line, then we can't decide | |
# between 'internal' and 'initial'. | |
if aug_tok.linestart and context == "internal": | |
context = "unknown" | |
# Find the case-normalized type of the token. If it's a | |
# sentence-final token, strip off the period. | |
typ = aug_tok.type_no_sentperiod | |
# Update the orthographic context table. | |
flag = _ORTHO_MAP.get((context, aug_tok.first_case), 0) | |
if flag: | |
self._params.add_ortho_context(typ, flag) | |
# Decide whether the next word is at a sentence boundary. | |
if aug_tok.sentbreak: | |
if not (aug_tok.is_number or aug_tok.is_initial): | |
context = "initial" | |
else: | |
context = "unknown" | |
elif aug_tok.ellipsis or aug_tok.abbr: | |
context = "unknown" | |
else: | |
context = "internal" | |
# //////////////////////////////////////////////////////////// | |
# { Abbreviations | |
# //////////////////////////////////////////////////////////// | |
def _reclassify_abbrev_types(self, types): | |
""" | |
(Re)classifies each given token if | |
- it is period-final and not a known abbreviation; or | |
- it is not period-final and is otherwise a known abbreviation | |
by checking whether its previous classification still holds according | |
to the heuristics of section 3. | |
Yields triples (abbr, score, is_add) where abbr is the type in question, | |
score is its log-likelihood with penalties applied, and is_add specifies | |
whether the present type is a candidate for inclusion or exclusion as an | |
abbreviation, such that: | |
- (is_add and score >= 0.3) suggests a new abbreviation; and | |
- (not is_add and score < 0.3) suggests excluding an abbreviation. | |
""" | |
# (While one could recalculate abbreviations from all .-final tokens at | |
# every iteration, in cases requiring efficiency, the number of tokens | |
# in the present training document will be much less.) | |
for typ in types: | |
# Check some basic conditions, to rule out words that are | |
# clearly not abbrev_types. | |
if not _re_non_punct.search(typ) or typ == "##number##": | |
continue | |
if typ.endswith("."): | |
if typ in self._params.abbrev_types: | |
continue | |
typ = typ[:-1] | |
is_add = True | |
else: | |
if typ not in self._params.abbrev_types: | |
continue | |
is_add = False | |
# Count how many periods & nonperiods are in the | |
# candidate. | |
num_periods = typ.count(".") + 1 | |
num_nonperiods = len(typ) - num_periods + 1 | |
# Let <a> be the candidate without the period, and <b> | |
# be the period. Find a log likelihood ratio that | |
# indicates whether <ab> occurs as a single unit (high | |
# value of log_likelihood), or as two independent units <a> and | |
# <b> (low value of log_likelihood). | |
count_with_period = self._type_fdist[typ + "."] | |
count_without_period = self._type_fdist[typ] | |
log_likelihood = self._dunning_log_likelihood( | |
count_with_period + count_without_period, | |
self._num_period_toks, | |
count_with_period, | |
self._type_fdist.N(), | |
) | |
# Apply three scaling factors to 'tweak' the basic log | |
# likelihood ratio: | |
# F_length: long word -> less likely to be an abbrev | |
# F_periods: more periods -> more likely to be an abbrev | |
# F_penalty: penalize occurrences w/o a period | |
f_length = math.exp(-num_nonperiods) | |
f_periods = num_periods | |
f_penalty = int(self.IGNORE_ABBREV_PENALTY) or math.pow( | |
num_nonperiods, -count_without_period | |
) | |
score = log_likelihood * f_length * f_periods * f_penalty | |
yield typ, score, is_add | |
def find_abbrev_types(self): | |
""" | |
Recalculates abbreviations given type frequencies, despite no prior | |
determination of abbreviations. | |
This fails to include abbreviations otherwise found as "rare". | |
""" | |
self._params.clear_abbrevs() | |
tokens = (typ for typ in self._type_fdist if typ and typ.endswith(".")) | |
for abbr, score, _is_add in self._reclassify_abbrev_types(tokens): | |
if score >= self.ABBREV: | |
self._params.abbrev_types.add(abbr) | |
# This function combines the work done by the original code's | |
# functions `count_orthography_context`, `get_orthography_count`, | |
# and `get_rare_abbreviations`. | |
def _is_rare_abbrev_type(self, cur_tok, next_tok): | |
""" | |
A word type is counted as a rare abbreviation if... | |
- it's not already marked as an abbreviation | |
- it occurs fewer than ABBREV_BACKOFF times | |
- either it is followed by a sentence-internal punctuation | |
mark, *or* it is followed by a lower-case word that | |
sometimes appears with upper case, but never occurs with | |
lower case at the beginning of sentences. | |
""" | |
if cur_tok.abbr or not cur_tok.sentbreak: | |
return False | |
# Find the case-normalized type of the token. If it's | |
# a sentence-final token, strip off the period. | |
typ = cur_tok.type_no_sentperiod | |
# Proceed only if the type hasn't been categorized as an | |
# abbreviation already, and is sufficiently rare... | |
count = self._type_fdist[typ] + self._type_fdist[typ[:-1]] | |
if typ in self._params.abbrev_types or count >= self.ABBREV_BACKOFF: | |
return False | |
# Record this token as an abbreviation if the next | |
# token is a sentence-internal punctuation mark. | |
# [XX] :1 or check the whole thing?? | |
if next_tok.tok[:1] in self._lang_vars.internal_punctuation: | |
return True | |
# Record this type as an abbreviation if the next | |
# token... (i) starts with a lower case letter, | |
# (ii) sometimes occurs with an uppercase letter, | |
# and (iii) never occus with an uppercase letter | |
# sentence-internally. | |
# [xx] should the check for (ii) be modified?? | |
if next_tok.first_lower: | |
typ2 = next_tok.type_no_sentperiod | |
typ2ortho_context = self._params.ortho_context[typ2] | |
if (typ2ortho_context & _ORTHO_BEG_UC) and not ( | |
typ2ortho_context & _ORTHO_MID_UC | |
): | |
return True | |
# //////////////////////////////////////////////////////////// | |
# { Log Likelihoods | |
# //////////////////////////////////////////////////////////// | |
# helper for _reclassify_abbrev_types: | |
def _dunning_log_likelihood(count_a, count_b, count_ab, N): | |
""" | |
A function that calculates the modified Dunning log-likelihood | |
ratio scores for abbreviation candidates. The details of how | |
this works is available in the paper. | |
""" | |
p1 = count_b / N | |
p2 = 0.99 | |
null_hypo = count_ab * math.log(p1) + (count_a - count_ab) * math.log(1.0 - p1) | |
alt_hypo = count_ab * math.log(p2) + (count_a - count_ab) * math.log(1.0 - p2) | |
likelihood = null_hypo - alt_hypo | |
return -2.0 * likelihood | |
def _col_log_likelihood(count_a, count_b, count_ab, N): | |
""" | |
A function that will just compute log-likelihood estimate, in | |
the original paper it's described in algorithm 6 and 7. | |
This *should* be the original Dunning log-likelihood values, | |
unlike the previous log_l function where it used modified | |
Dunning log-likelihood values | |
""" | |
p = count_b / N | |
p1 = count_ab / count_a | |
try: | |
p2 = (count_b - count_ab) / (N - count_a) | |
except ZeroDivisionError: | |
p2 = 1 | |
try: | |
summand1 = count_ab * math.log(p) + (count_a - count_ab) * math.log(1.0 - p) | |
except ValueError: | |
summand1 = 0 | |
try: | |
summand2 = (count_b - count_ab) * math.log(p) + ( | |
N - count_a - count_b + count_ab | |
) * math.log(1.0 - p) | |
except ValueError: | |
summand2 = 0 | |
if count_a == count_ab or p1 <= 0 or p1 >= 1: | |
summand3 = 0 | |
else: | |
summand3 = count_ab * math.log(p1) + (count_a - count_ab) * math.log( | |
1.0 - p1 | |
) | |
if count_b == count_ab or p2 <= 0 or p2 >= 1: | |
summand4 = 0 | |
else: | |
summand4 = (count_b - count_ab) * math.log(p2) + ( | |
N - count_a - count_b + count_ab | |
) * math.log(1.0 - p2) | |
likelihood = summand1 + summand2 - summand3 - summand4 | |
return -2.0 * likelihood | |
# //////////////////////////////////////////////////////////// | |
# { Collocation Finder | |
# //////////////////////////////////////////////////////////// | |
def _is_potential_collocation(self, aug_tok1, aug_tok2): | |
""" | |
Returns True if the pair of tokens may form a collocation given | |
log-likelihood statistics. | |
""" | |
return ( | |
( | |
self.INCLUDE_ALL_COLLOCS | |
or (self.INCLUDE_ABBREV_COLLOCS and aug_tok1.abbr) | |
or (aug_tok1.sentbreak and (aug_tok1.is_number or aug_tok1.is_initial)) | |
) | |
and aug_tok1.is_non_punct | |
and aug_tok2.is_non_punct | |
) | |
def _find_collocations(self): | |
""" | |
Generates likely collocations and their log-likelihood. | |
""" | |
for types in self._collocation_fdist: | |
try: | |
typ1, typ2 = types | |
except TypeError: | |
# types may be None after calling freq_threshold() | |
continue | |
if typ2 in self._params.sent_starters: | |
continue | |
col_count = self._collocation_fdist[types] | |
typ1_count = self._type_fdist[typ1] + self._type_fdist[typ1 + "."] | |
typ2_count = self._type_fdist[typ2] + self._type_fdist[typ2 + "."] | |
if ( | |
typ1_count > 1 | |
and typ2_count > 1 | |
and self.MIN_COLLOC_FREQ < col_count <= min(typ1_count, typ2_count) | |
): | |
log_likelihood = self._col_log_likelihood( | |
typ1_count, typ2_count, col_count, self._type_fdist.N() | |
) | |
# Filter out the not-so-collocative | |
if log_likelihood >= self.COLLOCATION and ( | |
self._type_fdist.N() / typ1_count > typ2_count / col_count | |
): | |
yield (typ1, typ2), log_likelihood | |
# //////////////////////////////////////////////////////////// | |
# { Sentence-Starter Finder | |
# //////////////////////////////////////////////////////////// | |
def _is_potential_sent_starter(self, cur_tok, prev_tok): | |
""" | |
Returns True given a token and the token that precedes it if it | |
seems clear that the token is beginning a sentence. | |
""" | |
# If a token (i) is preceded by a sentece break that is | |
# not a potential ordinal number or initial, and (ii) is | |
# alphabetic, then it is a a sentence-starter. | |
return ( | |
prev_tok.sentbreak | |
and not (prev_tok.is_number or prev_tok.is_initial) | |
and cur_tok.is_alpha | |
) | |
def _find_sent_starters(self): | |
""" | |
Uses collocation heuristics for each candidate token to | |
determine if it frequently starts sentences. | |
""" | |
for typ in self._sent_starter_fdist: | |
if not typ: | |
continue | |
typ_at_break_count = self._sent_starter_fdist[typ] | |
typ_count = self._type_fdist[typ] + self._type_fdist[typ + "."] | |
if typ_count < typ_at_break_count: | |
# needed after freq_threshold | |
continue | |
log_likelihood = self._col_log_likelihood( | |
self._sentbreak_count, | |
typ_count, | |
typ_at_break_count, | |
self._type_fdist.N(), | |
) | |
if ( | |
log_likelihood >= self.SENT_STARTER | |
and self._type_fdist.N() / self._sentbreak_count | |
> typ_count / typ_at_break_count | |
): | |
yield typ, log_likelihood | |
def _get_sentbreak_count(self, tokens): | |
""" | |
Returns the number of sentence breaks marked in a given set of | |
augmented tokens. | |
""" | |
return sum(1 for aug_tok in tokens if aug_tok.sentbreak) | |
###################################################################### | |
# { Punkt Sentence Tokenizer | |
###################################################################### | |
class PunktSentenceTokenizer(PunktBaseClass, TokenizerI): | |
""" | |
A sentence tokenizer which uses an unsupervised algorithm to build | |
a model for abbreviation words, collocations, and words that start | |
sentences; and then uses that model to find sentence boundaries. | |
This approach has been shown to work well for many European | |
languages. | |
""" | |
def __init__( | |
self, train_text=None, verbose=False, lang_vars=None, token_cls=PunktToken | |
): | |
""" | |
train_text can either be the sole training text for this sentence | |
boundary detector, or can be a PunktParameters object. | |
""" | |
PunktBaseClass.__init__(self, lang_vars=lang_vars, token_cls=token_cls) | |
if train_text: | |
self._params = self.train(train_text, verbose) | |
def train(self, train_text, verbose=False): | |
""" | |
Derives parameters from a given training text, or uses the parameters | |
given. Repeated calls to this method destroy previous parameters. For | |
incremental training, instantiate a separate PunktTrainer instance. | |
""" | |
if not isinstance(train_text, str): | |
return train_text | |
return PunktTrainer( | |
train_text, lang_vars=self._lang_vars, token_cls=self._Token | |
).get_params() | |
# //////////////////////////////////////////////////////////// | |
# { Tokenization | |
# //////////////////////////////////////////////////////////// | |
def tokenize(self, text: str, realign_boundaries: bool = True) -> List[str]: | |
""" | |
Given a text, returns a list of the sentences in that text. | |
""" | |
return list(self.sentences_from_text(text, realign_boundaries)) | |
def debug_decisions(self, text: str) -> Iterator[Dict[str, Any]]: | |
""" | |
Classifies candidate periods as sentence breaks, yielding a dict for | |
each that may be used to understand why the decision was made. | |
See format_debug_decision() to help make this output readable. | |
""" | |
for match, decision_text in self._match_potential_end_contexts(text): | |
tokens = self._tokenize_words(decision_text) | |
tokens = list(self._annotate_first_pass(tokens)) | |
while tokens and not tokens[0].tok.endswith(self._lang_vars.sent_end_chars): | |
tokens.pop(0) | |
yield { | |
"period_index": match.end() - 1, | |
"text": decision_text, | |
"type1": tokens[0].type, | |
"type2": tokens[1].type, | |
"type1_in_abbrs": bool(tokens[0].abbr), | |
"type1_is_initial": bool(tokens[0].is_initial), | |
"type2_is_sent_starter": tokens[1].type_no_sentperiod | |
in self._params.sent_starters, | |
"type2_ortho_heuristic": self._ortho_heuristic(tokens[1]), | |
"type2_ortho_contexts": set( | |
self._params._debug_ortho_context(tokens[1].type_no_sentperiod) | |
), | |
"collocation": ( | |
tokens[0].type_no_sentperiod, | |
tokens[1].type_no_sentperiod, | |
) | |
in self._params.collocations, | |
"reason": self._second_pass_annotation(tokens[0], tokens[1]) | |
or REASON_DEFAULT_DECISION, | |
"break_decision": tokens[0].sentbreak, | |
} | |
def span_tokenize( | |
self, text: str, realign_boundaries: bool = True | |
) -> Iterator[Tuple[int, int]]: | |
""" | |
Given a text, generates (start, end) spans of sentences | |
in the text. | |
""" | |
slices = self._slices_from_text(text) | |
if realign_boundaries: | |
slices = self._realign_boundaries(text, slices) | |
for sentence in slices: | |
yield (sentence.start, sentence.stop) | |
def sentences_from_text( | |
self, text: str, realign_boundaries: bool = True | |
) -> List[str]: | |
""" | |
Given a text, generates the sentences in that text by only | |
testing candidate sentence breaks. If realign_boundaries is | |
True, includes in the sentence closing punctuation that | |
follows the period. | |
""" | |
return [text[s:e] for s, e in self.span_tokenize(text, realign_boundaries)] | |
def _get_last_whitespace_index(self, text: str) -> int: | |
""" | |
Given a text, find the index of the *last* occurrence of *any* | |
whitespace character, i.e. " ", "\n", "\t", "\r", etc. | |
If none is found, return 0. | |
""" | |
for i in range(len(text) - 1, -1, -1): | |
if text[i] in string.whitespace: | |
return i | |
return 0 | |
def _match_potential_end_contexts(self, text: str) -> Iterator[Tuple[Match, str]]: | |
""" | |
Given a text, find the matches of potential sentence breaks, | |
alongside the contexts surrounding these sentence breaks. | |
Since the fix for the ReDOS discovered in issue #2866, we no longer match | |
the word before a potential end of sentence token. Instead, we use a separate | |
regex for this. As a consequence, `finditer`'s desire to find non-overlapping | |
matches no longer aids us in finding the single longest match. | |
Where previously, we could use:: | |
>>> pst = PunktSentenceTokenizer() | |
>>> text = "Very bad acting!!! I promise." | |
>>> list(pst._lang_vars.period_context_re().finditer(text)) # doctest: +SKIP | |
[<re.Match object; span=(9, 18), match='acting!!!'>] | |
Now we have to find the word before (i.e. 'acting') separately, and `finditer` | |
returns:: | |
>>> pst = PunktSentenceTokenizer() | |
>>> text = "Very bad acting!!! I promise." | |
>>> list(pst._lang_vars.period_context_re().finditer(text)) # doctest: +NORMALIZE_WHITESPACE | |
[<re.Match object; span=(15, 16), match='!'>, | |
<re.Match object; span=(16, 17), match='!'>, | |
<re.Match object; span=(17, 18), match='!'>] | |
So, we need to find the word before the match from right to left, and then manually remove | |
the overlaps. That is what this method does:: | |
>>> pst = PunktSentenceTokenizer() | |
>>> text = "Very bad acting!!! I promise." | |
>>> list(pst._match_potential_end_contexts(text)) | |
[(<re.Match object; span=(17, 18), match='!'>, 'acting!!! I')] | |
:param text: String of one or more sentences | |
:type text: str | |
:return: Generator of match-context tuples. | |
:rtype: Iterator[Tuple[Match, str]] | |
""" | |
previous_slice = slice(0, 0) | |
previous_match = None | |
for match in self._lang_vars.period_context_re().finditer(text): | |
# Get the slice of the previous word | |
before_text = text[previous_slice.stop : match.start()] | |
index_after_last_space = self._get_last_whitespace_index(before_text) | |
if index_after_last_space: | |
# + 1 to exclude the space itself | |
index_after_last_space += previous_slice.stop + 1 | |
else: | |
index_after_last_space = previous_slice.start | |
prev_word_slice = slice(index_after_last_space, match.start()) | |
# If the previous slice does not overlap with this slice, then | |
# we can yield the previous match and slice. If there is an overlap, | |
# then we do not yield the previous match and slice. | |
if previous_match and previous_slice.stop <= prev_word_slice.start: | |
yield ( | |
previous_match, | |
text[previous_slice] | |
+ previous_match.group() | |
+ previous_match.group("after_tok"), | |
) | |
previous_match = match | |
previous_slice = prev_word_slice | |
# Yield the last match and context, if it exists | |
if previous_match: | |
yield ( | |
previous_match, | |
text[previous_slice] | |
+ previous_match.group() | |
+ previous_match.group("after_tok"), | |
) | |
def _slices_from_text(self, text: str) -> Iterator[slice]: | |
last_break = 0 | |
for match, context in self._match_potential_end_contexts(text): | |
if self.text_contains_sentbreak(context): | |
yield slice(last_break, match.end()) | |
if match.group("next_tok"): | |
# next sentence starts after whitespace | |
last_break = match.start("next_tok") | |
else: | |
# next sentence starts at following punctuation | |
last_break = match.end() | |
# The last sentence should not contain trailing whitespace. | |
yield slice(last_break, len(text.rstrip())) | |
def _realign_boundaries( | |
self, text: str, slices: Iterator[slice] | |
) -> Iterator[slice]: | |
""" | |
Attempts to realign punctuation that falls after the period but | |
should otherwise be included in the same sentence. | |
For example: "(Sent1.) Sent2." will otherwise be split as:: | |
["(Sent1.", ") Sent1."]. | |
This method will produce:: | |
["(Sent1.)", "Sent2."]. | |
""" | |
realign = 0 | |
for sentence1, sentence2 in _pair_iter(slices): | |
sentence1 = slice(sentence1.start + realign, sentence1.stop) | |
if not sentence2: | |
if text[sentence1]: | |
yield sentence1 | |
continue | |
m = self._lang_vars.re_boundary_realignment.match(text[sentence2]) | |
if m: | |
yield slice(sentence1.start, sentence2.start + len(m.group(0).rstrip())) | |
realign = m.end() | |
else: | |
realign = 0 | |
if text[sentence1]: | |
yield sentence1 | |
def text_contains_sentbreak(self, text: str) -> bool: | |
""" | |
Returns True if the given text includes a sentence break. | |
""" | |
found = False # used to ignore last token | |
for tok in self._annotate_tokens(self._tokenize_words(text)): | |
if found: | |
return True | |
if tok.sentbreak: | |
found = True | |
return False | |
def sentences_from_text_legacy(self, text: str) -> Iterator[str]: | |
""" | |
Given a text, generates the sentences in that text. Annotates all | |
tokens, rather than just those with possible sentence breaks. Should | |
produce the same results as ``sentences_from_text``. | |
""" | |
tokens = self._annotate_tokens(self._tokenize_words(text)) | |
return self._build_sentence_list(text, tokens) | |
def sentences_from_tokens( | |
self, tokens: Iterator[PunktToken] | |
) -> Iterator[PunktToken]: | |
""" | |
Given a sequence of tokens, generates lists of tokens, each list | |
corresponding to a sentence. | |
""" | |
tokens = iter(self._annotate_tokens(self._Token(t) for t in tokens)) | |
sentence = [] | |
for aug_tok in tokens: | |
sentence.append(aug_tok.tok) | |
if aug_tok.sentbreak: | |
yield sentence | |
sentence = [] | |
if sentence: | |
yield sentence | |
def _annotate_tokens(self, tokens: Iterator[PunktToken]) -> Iterator[PunktToken]: | |
""" | |
Given a set of tokens augmented with markers for line-start and | |
paragraph-start, returns an iterator through those tokens with full | |
annotation including predicted sentence breaks. | |
""" | |
# Make a preliminary pass through the document, marking likely | |
# sentence breaks, abbreviations, and ellipsis tokens. | |
tokens = self._annotate_first_pass(tokens) | |
# Make a second pass through the document, using token context | |
# information to change our preliminary decisions about where | |
# sentence breaks, abbreviations, and ellipsis occurs. | |
tokens = self._annotate_second_pass(tokens) | |
## [XX] TESTING | |
# tokens = list(tokens) | |
# self.dump(tokens) | |
return tokens | |
def _build_sentence_list( | |
self, text: str, tokens: Iterator[PunktToken] | |
) -> Iterator[str]: | |
""" | |
Given the original text and the list of augmented word tokens, | |
construct and return a tokenized list of sentence strings. | |
""" | |
# Most of the work here is making sure that we put the right | |
# pieces of whitespace back in all the right places. | |
# Our position in the source text, used to keep track of which | |
# whitespace to add: | |
pos = 0 | |
# A regular expression that finds pieces of whitespace: | |
white_space_regexp = re.compile(r"\s*") | |
sentence = "" | |
for aug_tok in tokens: | |
tok = aug_tok.tok | |
# Find the whitespace before this token, and update pos. | |
white_space = white_space_regexp.match(text, pos).group() | |
pos += len(white_space) | |
# Some of the rules used by the punkt word tokenizer | |
# strip whitespace out of the text, resulting in tokens | |
# that contain whitespace in the source text. If our | |
# token doesn't match, see if adding whitespace helps. | |
# If so, then use the version with whitespace. | |
if text[pos : pos + len(tok)] != tok: | |
pat = r"\s*".join(re.escape(c) for c in tok) | |
m = re.compile(pat).match(text, pos) | |
if m: | |
tok = m.group() | |
# Move our position pointer to the end of the token. | |
assert text[pos : pos + len(tok)] == tok | |
pos += len(tok) | |
# Add this token. If it's not at the beginning of the | |
# sentence, then include any whitespace that separated it | |
# from the previous token. | |
if sentence: | |
sentence += white_space | |
sentence += tok | |
# If we're at a sentence break, then start a new sentence. | |
if aug_tok.sentbreak: | |
yield sentence | |
sentence = "" | |
# If the last sentence is empty, discard it. | |
if sentence: | |
yield sentence | |
# [XX] TESTING | |
def dump(self, tokens: Iterator[PunktToken]) -> None: | |
print("writing to /tmp/punkt.new...") | |
with open("/tmp/punkt.new", "w") as outfile: | |
for aug_tok in tokens: | |
if aug_tok.parastart: | |
outfile.write("\n\n") | |
elif aug_tok.linestart: | |
outfile.write("\n") | |
else: | |
outfile.write(" ") | |
outfile.write(str(aug_tok)) | |
# //////////////////////////////////////////////////////////// | |
# { Customization Variables | |
# //////////////////////////////////////////////////////////// | |
PUNCTUATION = tuple(";:,.!?") | |
# //////////////////////////////////////////////////////////// | |
# { Annotation Procedures | |
# //////////////////////////////////////////////////////////// | |
def _annotate_second_pass( | |
self, tokens: Iterator[PunktToken] | |
) -> Iterator[PunktToken]: | |
""" | |
Performs a token-based classification (section 4) over the given | |
tokens, making use of the orthographic heuristic (4.1.1), collocation | |
heuristic (4.1.2) and frequent sentence starter heuristic (4.1.3). | |
""" | |
for token1, token2 in _pair_iter(tokens): | |
self._second_pass_annotation(token1, token2) | |
yield token1 | |
def _second_pass_annotation( | |
self, aug_tok1: PunktToken, aug_tok2: Optional[PunktToken] | |
) -> Optional[str]: | |
""" | |
Performs token-based classification over a pair of contiguous tokens | |
updating the first. | |
""" | |
# Is it the last token? We can't do anything then. | |
if not aug_tok2: | |
return | |
if not aug_tok1.period_final: | |
# We only care about words ending in periods. | |
return | |
typ = aug_tok1.type_no_period | |
next_typ = aug_tok2.type_no_sentperiod | |
tok_is_initial = aug_tok1.is_initial | |
# [4.1.2. Collocation Heuristic] If there's a | |
# collocation between the word before and after the | |
# period, then label tok as an abbreviation and NOT | |
# a sentence break. Note that collocations with | |
# frequent sentence starters as their second word are | |
# excluded in training. | |
if (typ, next_typ) in self._params.collocations: | |
aug_tok1.sentbreak = False | |
aug_tok1.abbr = True | |
return REASON_KNOWN_COLLOCATION | |
# [4.2. Token-Based Reclassification of Abbreviations] If | |
# the token is an abbreviation or an ellipsis, then decide | |
# whether we should *also* classify it as a sentbreak. | |
if (aug_tok1.abbr or aug_tok1.ellipsis) and (not tok_is_initial): | |
# [4.1.1. Orthographic Heuristic] Check if there's | |
# orthogrpahic evidence about whether the next word | |
# starts a sentence or not. | |
is_sent_starter = self._ortho_heuristic(aug_tok2) | |
if is_sent_starter == True: | |
aug_tok1.sentbreak = True | |
return REASON_ABBR_WITH_ORTHOGRAPHIC_HEURISTIC | |
# [4.1.3. Frequent Sentence Starter Heruistic] If the | |
# next word is capitalized, and is a member of the | |
# frequent-sentence-starters list, then label tok as a | |
# sentence break. | |
if aug_tok2.first_upper and next_typ in self._params.sent_starters: | |
aug_tok1.sentbreak = True | |
return REASON_ABBR_WITH_SENTENCE_STARTER | |
# [4.3. Token-Based Detection of Initials and Ordinals] | |
# Check if any initials or ordinals tokens that are marked | |
# as sentbreaks should be reclassified as abbreviations. | |
if tok_is_initial or typ == "##number##": | |
# [4.1.1. Orthographic Heuristic] Check if there's | |
# orthogrpahic evidence about whether the next word | |
# starts a sentence or not. | |
is_sent_starter = self._ortho_heuristic(aug_tok2) | |
if is_sent_starter == False: | |
aug_tok1.sentbreak = False | |
aug_tok1.abbr = True | |
if tok_is_initial: | |
return REASON_INITIAL_WITH_ORTHOGRAPHIC_HEURISTIC | |
return REASON_NUMBER_WITH_ORTHOGRAPHIC_HEURISTIC | |
# Special heuristic for initials: if orthogrpahic | |
# heuristic is unknown, and next word is always | |
# capitalized, then mark as abbrev (eg: J. Bach). | |
if ( | |
is_sent_starter == "unknown" | |
and tok_is_initial | |
and aug_tok2.first_upper | |
and not (self._params.ortho_context[next_typ] & _ORTHO_LC) | |
): | |
aug_tok1.sentbreak = False | |
aug_tok1.abbr = True | |
return REASON_INITIAL_WITH_SPECIAL_ORTHOGRAPHIC_HEURISTIC | |
return | |
def _ortho_heuristic(self, aug_tok: PunktToken) -> Union[bool, str]: | |
""" | |
Decide whether the given token is the first token in a sentence. | |
""" | |
# Sentences don't start with punctuation marks: | |
if aug_tok.tok in self.PUNCTUATION: | |
return False | |
ortho_context = self._params.ortho_context[aug_tok.type_no_sentperiod] | |
# If the word is capitalized, occurs at least once with a | |
# lower case first letter, and never occurs with an upper case | |
# first letter sentence-internally, then it's a sentence starter. | |
if ( | |
aug_tok.first_upper | |
and (ortho_context & _ORTHO_LC) | |
and not (ortho_context & _ORTHO_MID_UC) | |
): | |
return True | |
# If the word is lower case, and either (a) we've seen it used | |
# with upper case, or (b) we've never seen it used | |
# sentence-initially with lower case, then it's not a sentence | |
# starter. | |
if aug_tok.first_lower and ( | |
(ortho_context & _ORTHO_UC) or not (ortho_context & _ORTHO_BEG_LC) | |
): | |
return False | |
# Otherwise, we're not sure. | |
return "unknown" | |
DEBUG_DECISION_FMT = """Text: {text!r} (at offset {period_index}) | |
Sentence break? {break_decision} ({reason}) | |
Collocation? {collocation} | |
{type1!r}: | |
known abbreviation: {type1_in_abbrs} | |
is initial: {type1_is_initial} | |
{type2!r}: | |
known sentence starter: {type2_is_sent_starter} | |
orthographic heuristic suggests is a sentence starter? {type2_ortho_heuristic} | |
orthographic contexts in training: {type2_ortho_contexts} | |
""" | |
def format_debug_decision(d): | |
return DEBUG_DECISION_FMT.format(**d) | |
def demo(text, tok_cls=PunktSentenceTokenizer, train_cls=PunktTrainer): | |
"""Builds a punkt model and applies it to the same text""" | |
cleanup = ( | |
lambda s: re.compile(r"(?:\r|^\s+)", re.MULTILINE).sub("", s).replace("\n", " ") | |
) | |
trainer = train_cls() | |
trainer.INCLUDE_ALL_COLLOCS = True | |
trainer.train(text) | |
sbd = tok_cls(trainer.get_params()) | |
for sentence in sbd.sentences_from_text(text): | |
print(cleanup(sentence)) | |