Spaces:
Sleeping
Sleeping
# Natural Language Toolkit: NLTK's very own tokenizer. | |
# | |
# Copyright (C) 2001-2023 NLTK Project | |
# Author: Liling Tan | |
# Tom Aarsen <> (modifications) | |
# URL: <https://www.nltk.org> | |
# For license information, see LICENSE.TXT | |
import re | |
import warnings | |
from typing import Iterator, List, Tuple | |
from nltk.tokenize.api import TokenizerI | |
from nltk.tokenize.util import align_tokens | |
class MacIntyreContractions: | |
""" | |
List of contractions adapted from Robert MacIntyre's tokenizer. | |
""" | |
CONTRACTIONS2 = [ | |
r"(?i)\b(can)(?#X)(not)\b", | |
r"(?i)\b(d)(?#X)('ye)\b", | |
r"(?i)\b(gim)(?#X)(me)\b", | |
r"(?i)\b(gon)(?#X)(na)\b", | |
r"(?i)\b(got)(?#X)(ta)\b", | |
r"(?i)\b(lem)(?#X)(me)\b", | |
r"(?i)\b(more)(?#X)('n)\b", | |
r"(?i)\b(wan)(?#X)(na)(?=\s)", | |
] | |
CONTRACTIONS3 = [r"(?i) ('t)(?#X)(is)\b", r"(?i) ('t)(?#X)(was)\b"] | |
CONTRACTIONS4 = [r"(?i)\b(whad)(dd)(ya)\b", r"(?i)\b(wha)(t)(cha)\b"] | |
class NLTKWordTokenizer(TokenizerI): | |
""" | |
The NLTK tokenizer that has improved upon the TreebankWordTokenizer. | |
This is the method that is invoked by ``word_tokenize()``. It assumes that the | |
text has already been segmented into sentences, e.g. using ``sent_tokenize()``. | |
The tokenizer is "destructive" such that the regexes applied will munge the | |
input string to a state beyond re-construction. It is possible to apply | |
`TreebankWordDetokenizer.detokenize` to the tokenized outputs of | |
`NLTKDestructiveWordTokenizer.tokenize` but there's no guarantees to | |
revert to the original string. | |
""" | |
# Starting quotes. | |
STARTING_QUOTES = [ | |
(re.compile("([Β«βββ]|[`]+)", re.U), r" \1 "), | |
(re.compile(r"^\""), r"``"), | |
(re.compile(r"(``)"), r" \1 "), | |
(re.compile(r"([ \(\[{<])(\"|\'{2})"), r"\1 `` "), | |
(re.compile(r"(?i)(\')(?!re|ve|ll|m|t|s|d|n)(\w)\b", re.U), r"\1 \2"), | |
] | |
# Ending quotes. | |
ENDING_QUOTES = [ | |
(re.compile("([Β»ββ])", re.U), r" \1 "), | |
(re.compile(r"''"), " '' "), | |
(re.compile(r'"'), " '' "), | |
(re.compile(r"([^' ])('[sS]|'[mM]|'[dD]|') "), r"\1 \2 "), | |
(re.compile(r"([^' ])('ll|'LL|'re|'RE|'ve|'VE|n't|N'T) "), r"\1 \2 "), | |
] | |
# For improvements for starting/closing quotes from TreebankWordTokenizer, | |
# see discussion on https://github.com/nltk/nltk/pull/1437 | |
# Adding to TreebankWordTokenizer, nltk.word_tokenize now splits on | |
# - chervon quotes u'\xab' and u'\xbb' . | |
# - unicode quotes u'\u2018', u'\u2019', u'\u201c' and u'\u201d' | |
# See https://github.com/nltk/nltk/issues/1995#issuecomment-376741608 | |
# Also, behavior of splitting on clitics now follows Stanford CoreNLP | |
# - clitics covered (?!re|ve|ll|m|t|s|d)(\w)\b | |
# Punctuation. | |
PUNCTUATION = [ | |
(re.compile(r'([^\.])(\.)([\]\)}>"\'' "Β»ββ " r"]*)\s*$", re.U), r"\1 \2 \3 "), | |
(re.compile(r"([:,])([^\d])"), r" \1 \2"), | |
(re.compile(r"([:,])$"), r" \1 "), | |
( | |
re.compile(r"\.{2,}", re.U), | |
r" \g<0> ", | |
), # See https://github.com/nltk/nltk/pull/2322 | |
(re.compile(r"[;@#$%&]"), r" \g<0> "), | |
( | |
re.compile(r'([^\.])(\.)([\]\)}>"\']*)\s*$'), | |
r"\1 \2\3 ", | |
), # Handles the final period. | |
(re.compile(r"[?!]"), r" \g<0> "), | |
(re.compile(r"([^'])' "), r"\1 ' "), | |
( | |
re.compile(r"[*]", re.U), | |
r" \g<0> ", | |
), # See https://github.com/nltk/nltk/pull/2322 | |
] | |
# Pads parentheses | |
PARENS_BRACKETS = (re.compile(r"[\]\[\(\)\{\}\<\>]"), r" \g<0> ") | |
# Optionally: Convert parentheses, brackets and converts them to PTB symbols. | |
CONVERT_PARENTHESES = [ | |
(re.compile(r"\("), "-LRB-"), | |
(re.compile(r"\)"), "-RRB-"), | |
(re.compile(r"\["), "-LSB-"), | |
(re.compile(r"\]"), "-RSB-"), | |
(re.compile(r"\{"), "-LCB-"), | |
(re.compile(r"\}"), "-RCB-"), | |
] | |
DOUBLE_DASHES = (re.compile(r"--"), r" -- ") | |
# List of contractions adapted from Robert MacIntyre's tokenizer. | |
_contractions = MacIntyreContractions() | |
CONTRACTIONS2 = list(map(re.compile, _contractions.CONTRACTIONS2)) | |
CONTRACTIONS3 = list(map(re.compile, _contractions.CONTRACTIONS3)) | |
def tokenize( | |
self, text: str, convert_parentheses: bool = False, return_str: bool = False | |
) -> List[str]: | |
r"""Return a tokenized copy of `text`. | |
>>> from nltk.tokenize import NLTKWordTokenizer | |
>>> s = '''Good muffins cost $3.88 (roughly 3,36 euros)\nin New York. Please buy me\ntwo of them.\nThanks.''' | |
>>> NLTKWordTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
['Good', 'muffins', 'cost', '$', '3.88', '(', 'roughly', '3,36', | |
'euros', ')', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two', | |
'of', 'them.', 'Thanks', '.'] | |
>>> NLTKWordTokenizer().tokenize(s, convert_parentheses=True) # doctest: +NORMALIZE_WHITESPACE | |
['Good', 'muffins', 'cost', '$', '3.88', '-LRB-', 'roughly', '3,36', | |
'euros', '-RRB-', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two', | |
'of', 'them.', 'Thanks', '.'] | |
:param text: A string with a sentence or sentences. | |
:type text: str | |
:param convert_parentheses: if True, replace parentheses to PTB symbols, | |
e.g. `(` to `-LRB-`. Defaults to False. | |
:type convert_parentheses: bool, optional | |
:param return_str: If True, return tokens as space-separated string, | |
defaults to False. | |
:type return_str: bool, optional | |
:return: List of tokens from `text`. | |
:rtype: List[str] | |
""" | |
if return_str: | |
warnings.warn( | |
"Parameter 'return_str' has been deprecated and should no " | |
"longer be used.", | |
category=DeprecationWarning, | |
stacklevel=2, | |
) | |
for regexp, substitution in self.STARTING_QUOTES: | |
text = regexp.sub(substitution, text) | |
for regexp, substitution in self.PUNCTUATION: | |
text = regexp.sub(substitution, text) | |
# Handles parentheses. | |
regexp, substitution = self.PARENS_BRACKETS | |
text = regexp.sub(substitution, text) | |
# Optionally convert parentheses | |
if convert_parentheses: | |
for regexp, substitution in self.CONVERT_PARENTHESES: | |
text = regexp.sub(substitution, text) | |
# Handles double dash. | |
regexp, substitution = self.DOUBLE_DASHES | |
text = regexp.sub(substitution, text) | |
# add extra space to make things easier | |
text = " " + text + " " | |
for regexp, substitution in self.ENDING_QUOTES: | |
text = regexp.sub(substitution, text) | |
for regexp in self.CONTRACTIONS2: | |
text = regexp.sub(r" \1 \2 ", text) | |
for regexp in self.CONTRACTIONS3: | |
text = regexp.sub(r" \1 \2 ", text) | |
# We are not using CONTRACTIONS4 since | |
# they are also commented out in the SED scripts | |
# for regexp in self._contractions.CONTRACTIONS4: | |
# text = regexp.sub(r' \1 \2 \3 ', text) | |
return text.split() | |
def span_tokenize(self, text: str) -> Iterator[Tuple[int, int]]: | |
r""" | |
Returns the spans of the tokens in ``text``. | |
Uses the post-hoc nltk.tokens.align_tokens to return the offset spans. | |
>>> from nltk.tokenize import NLTKWordTokenizer | |
>>> s = '''Good muffins cost $3.88\nin New (York). Please (buy) me\ntwo of them.\n(Thanks).''' | |
>>> expected = [(0, 4), (5, 12), (13, 17), (18, 19), (19, 23), | |
... (24, 26), (27, 30), (31, 32), (32, 36), (36, 37), (37, 38), | |
... (40, 46), (47, 48), (48, 51), (51, 52), (53, 55), (56, 59), | |
... (60, 62), (63, 68), (69, 70), (70, 76), (76, 77), (77, 78)] | |
>>> list(NLTKWordTokenizer().span_tokenize(s)) == expected | |
True | |
>>> expected = ['Good', 'muffins', 'cost', '$', '3.88', 'in', | |
... 'New', '(', 'York', ')', '.', 'Please', '(', 'buy', ')', | |
... 'me', 'two', 'of', 'them.', '(', 'Thanks', ')', '.'] | |
>>> [s[start:end] for start, end in NLTKWordTokenizer().span_tokenize(s)] == expected | |
True | |
:param text: A string with a sentence or sentences. | |
:type text: str | |
:yield: Tuple[int, int] | |
""" | |
raw_tokens = self.tokenize(text) | |
# Convert converted quotes back to original double quotes | |
# Do this only if original text contains double quote(s) or double | |
# single-quotes (because '' might be transformed to `` if it is | |
# treated as starting quotes). | |
if ('"' in text) or ("''" in text): | |
# Find double quotes and converted quotes | |
matched = [m.group() for m in re.finditer(r"``|'{2}|\"", text)] | |
# Replace converted quotes back to double quotes | |
tokens = [ | |
matched.pop(0) if tok in ['"', "``", "''"] else tok | |
for tok in raw_tokens | |
] | |
else: | |
tokens = raw_tokens | |
yield from align_tokens(tokens, text) | |