Spaces:
Sleeping
Sleeping
.. Copyright (C) 2001-2023 NLTK Project | |
.. For license information, see LICENSE.TXT | |
=========== | |
Probability | |
=========== | |
>>> from nltk.test.probability_fixt import setup_module | |
>>> setup_module() | |
>>> import nltk | |
>>> from nltk.probability import * | |
FreqDist | |
-------- | |
>>> text1 = ['no', 'good', 'fish', 'goes', 'anywhere', 'without', 'a', 'porpoise', '!'] | |
>>> text2 = ['no', 'good', 'porpoise', 'likes', 'to', 'fish', 'fish', 'anywhere', '.'] | |
>>> fd1 = nltk.FreqDist(text1) | |
>>> fd1 == nltk.FreqDist(text1) | |
True | |
Note that items are sorted in order of decreasing frequency; two items of the same frequency appear in indeterminate order. | |
>>> import itertools | |
>>> both = nltk.FreqDist(text1 + text2) | |
>>> both_most_common = both.most_common() | |
>>> list(itertools.chain(*(sorted(ys) for k, ys in itertools.groupby(both_most_common, key=lambda t: t[1])))) | |
[('fish', 3), ('anywhere', 2), ('good', 2), ('no', 2), ('porpoise', 2), ('!', 1), ('.', 1), ('a', 1), ('goes', 1), ('likes', 1), ('to', 1), ('without', 1)] | |
>>> both == fd1 + nltk.FreqDist(text2) | |
True | |
>>> fd1 == nltk.FreqDist(text1) # But fd1 is unchanged | |
True | |
>>> fd2 = nltk.FreqDist(text2) | |
>>> fd1.update(fd2) | |
>>> fd1 == both | |
True | |
>>> fd1 = nltk.FreqDist(text1) | |
>>> fd1.update(text2) | |
>>> fd1 == both | |
True | |
>>> fd1 = nltk.FreqDist(text1) | |
>>> fd2 = nltk.FreqDist(fd1) | |
>>> fd2 == fd1 | |
True | |
``nltk.FreqDist`` can be pickled: | |
>>> import pickle | |
>>> fd1 = nltk.FreqDist(text1) | |
>>> pickled = pickle.dumps(fd1) | |
>>> fd1 == pickle.loads(pickled) | |
True | |
Mathematical operations: | |
>>> FreqDist('abbb') + FreqDist('bcc') | |
FreqDist({'b': 4, 'c': 2, 'a': 1}) | |
>>> FreqDist('abbbc') - FreqDist('bccd') | |
FreqDist({'b': 2, 'a': 1}) | |
>>> FreqDist('abbb') | FreqDist('bcc') | |
FreqDist({'b': 3, 'c': 2, 'a': 1}) | |
>>> FreqDist('abbb') & FreqDist('bcc') | |
FreqDist({'b': 1}) | |
ConditionalFreqDist | |
------------------- | |
>>> cfd1 = ConditionalFreqDist() | |
>>> cfd1[1] = FreqDist('abbbb') | |
>>> cfd1[2] = FreqDist('xxxxyy') | |
>>> cfd1 | |
<ConditionalFreqDist with 2 conditions> | |
>>> cfd2 = ConditionalFreqDist() | |
>>> cfd2[1] = FreqDist('bbccc') | |
>>> cfd2[2] = FreqDist('xxxyyyzz') | |
>>> cfd2[3] = FreqDist('m') | |
>>> cfd2 | |
<ConditionalFreqDist with 3 conditions> | |
>>> r = cfd1 + cfd2 | |
>>> [(i,r[i]) for i in r.conditions()] | |
[(1, FreqDist({'b': 6, 'c': 3, 'a': 1})), (2, FreqDist({'x': 7, 'y': 5, 'z': 2})), (3, FreqDist({'m': 1}))] | |
>>> r = cfd1 - cfd2 | |
>>> [(i,r[i]) for i in r.conditions()] | |
[(1, FreqDist({'b': 2, 'a': 1})), (2, FreqDist({'x': 1}))] | |
>>> r = cfd1 | cfd2 | |
>>> [(i,r[i]) for i in r.conditions()] | |
[(1, FreqDist({'b': 4, 'c': 3, 'a': 1})), (2, FreqDist({'x': 4, 'y': 3, 'z': 2})), (3, FreqDist({'m': 1}))] | |
>>> r = cfd1 & cfd2 | |
>>> [(i,r[i]) for i in r.conditions()] | |
[(1, FreqDist({'b': 2})), (2, FreqDist({'x': 3, 'y': 2}))] | |
Testing some HMM estimators | |
--------------------------- | |
We extract a small part (500 sentences) of the Brown corpus | |
>>> corpus = nltk.corpus.brown.tagged_sents(categories='adventure')[:500] | |
>>> print(len(corpus)) | |
500 | |
We create a HMM trainer - note that we need the tags and symbols | |
from the whole corpus, not just the training corpus | |
>>> from nltk.util import unique_list | |
>>> tag_set = unique_list(tag for sent in corpus for (word,tag) in sent) | |
>>> print(len(tag_set)) | |
92 | |
>>> symbols = unique_list(word for sent in corpus for (word,tag) in sent) | |
>>> print(len(symbols)) | |
1464 | |
>>> trainer = nltk.tag.HiddenMarkovModelTrainer(tag_set, symbols) | |
We divide the corpus into 90% training and 10% testing | |
>>> train_corpus = [] | |
>>> test_corpus = [] | |
>>> for i in range(len(corpus)): | |
... if i % 10: | |
... train_corpus += [corpus[i]] | |
... else: | |
... test_corpus += [corpus[i]] | |
>>> print(len(train_corpus)) | |
450 | |
>>> print(len(test_corpus)) | |
50 | |
And now we can test the estimators | |
>>> def train_and_test(est): | |
... hmm = trainer.train_supervised(train_corpus, estimator=est) | |
... print('%.2f%%' % (100 * hmm.accuracy(test_corpus))) | |
Maximum Likelihood Estimation | |
----------------------------- | |
- this resulted in an initialization error before r7209 | |
>>> mle = lambda fd, bins: MLEProbDist(fd) | |
>>> train_and_test(mle) | |
22.75% | |
Laplace (= Lidstone with gamma==1) | |
>>> train_and_test(LaplaceProbDist) | |
66.04% | |
Expected Likelihood Estimation (= Lidstone with gamma==0.5) | |
>>> train_and_test(ELEProbDist) | |
73.01% | |
Lidstone Estimation, for gamma==0.1, 0.5 and 1 | |
(the later two should be exactly equal to MLE and ELE above) | |
>>> def lidstone(gamma): | |
... return lambda fd, bins: LidstoneProbDist(fd, gamma, bins) | |
>>> train_and_test(lidstone(0.1)) | |
82.51% | |
>>> train_and_test(lidstone(0.5)) | |
73.01% | |
>>> train_and_test(lidstone(1.0)) | |
66.04% | |
Witten Bell Estimation | |
---------------------- | |
- This resulted in ZeroDivisionError before r7209 | |
>>> train_and_test(WittenBellProbDist) | |
88.12% | |
Good Turing Estimation | |
>>> gt = lambda fd, bins: SimpleGoodTuringProbDist(fd, bins=1e5) | |
>>> train_and_test(gt) | |
86.93% | |
Kneser Ney Estimation | |
--------------------- | |
Since the Kneser-Ney distribution is best suited for trigrams, we must adjust | |
our testing accordingly. | |
>>> corpus = [[((x[0],y[0],z[0]),(x[1],y[1],z[1])) | |
... for x, y, z in nltk.trigrams(sent)] | |
... for sent in corpus[:100]] | |
We will then need to redefine the rest of the training/testing variables | |
>>> tag_set = unique_list(tag for sent in corpus for (word,tag) in sent) | |
>>> len(tag_set) | |
906 | |
>>> symbols = unique_list(word for sent in corpus for (word,tag) in sent) | |
>>> len(symbols) | |
1341 | |
>>> trainer = nltk.tag.HiddenMarkovModelTrainer(tag_set, symbols) | |
>>> train_corpus = [] | |
>>> test_corpus = [] | |
>>> for i in range(len(corpus)): | |
... if i % 10: | |
... train_corpus += [corpus[i]] | |
... else: | |
... test_corpus += [corpus[i]] | |
>>> len(train_corpus) | |
90 | |
>>> len(test_corpus) | |
10 | |
>>> kn = lambda fd, bins: KneserNeyProbDist(fd) | |
>>> train_and_test(kn) | |
0.86% | |
Remains to be added: | |
- Tests for HeldoutProbDist, CrossValidationProbDist and MutableProbDist | |
Squashed bugs | |
------------- | |
Issue 511: override pop and popitem to invalidate the cache | |
>>> fd = nltk.FreqDist('a') | |
>>> list(fd.keys()) | |
['a'] | |
>>> fd.pop('a') | |
1 | |
>>> list(fd.keys()) | |
[] | |
Issue 533: access cumulative frequencies with no arguments | |
>>> fd = nltk.FreqDist('aab') | |
>>> list(fd._cumulative_frequencies(['a'])) | |
[2.0] | |
>>> list(fd._cumulative_frequencies(['a', 'b'])) | |
[2.0, 3.0] | |
Issue 579: override clear to reset some variables | |
>>> fd = FreqDist('aab') | |
>>> fd.clear() | |
>>> fd.N() | |
0 | |
Issue 351: fix fileids method of CategorizedCorpusReader to inadvertently | |
add errant categories | |
>>> from nltk.corpus import brown | |
>>> brown.fileids('blah') | |
Traceback (most recent call last): | |
... | |
ValueError: Category blah not found | |
>>> brown.categories() | |
['adventure', 'belles_lettres', 'editorial', 'fiction', 'government', 'hobbies', 'humor', 'learned', 'lore', 'mystery', 'news', 'religion', 'reviews', 'romance', 'science_fiction'] | |
Issue 175: add the unseen bin to SimpleGoodTuringProbDist by default | |
otherwise any unseen events get a probability of zero, i.e., | |
they don't get smoothed | |
>>> from nltk import SimpleGoodTuringProbDist, FreqDist | |
>>> fd = FreqDist({'a':1, 'b':1, 'c': 2, 'd': 3, 'e': 4, 'f': 4, 'g': 4, 'h': 5, 'i': 5, 'j': 6, 'k': 6, 'l': 6, 'm': 7, 'n': 7, 'o': 8, 'p': 9, 'q': 10}) | |
>>> p = SimpleGoodTuringProbDist(fd) | |
>>> p.prob('a') | |
0.017649766667026317... | |
>>> p.prob('o') | |
0.08433050215340411... | |
>>> p.prob('z') | |
0.022727272727272728... | |
>>> p.prob('foobar') | |
0.022727272727272728... | |
``MLEProbDist``, ``ConditionalProbDist'', ``DictionaryConditionalProbDist`` and | |
``ConditionalFreqDist`` can be pickled: | |
>>> import pickle | |
>>> pd = MLEProbDist(fd) | |
>>> sorted(pd.samples()) == sorted(pickle.loads(pickle.dumps(pd)).samples()) | |
True | |
>>> dpd = DictionaryConditionalProbDist({'x': pd}) | |
>>> unpickled = pickle.loads(pickle.dumps(dpd)) | |
>>> dpd['x'].prob('a') | |
0.011363636... | |
>>> dpd['x'].prob('a') == unpickled['x'].prob('a') | |
True | |
>>> cfd = nltk.probability.ConditionalFreqDist() | |
>>> cfd['foo']['hello'] += 1 | |
>>> cfd['foo']['hello'] += 1 | |
>>> cfd['bar']['hello'] += 1 | |
>>> cfd2 = pickle.loads(pickle.dumps(cfd)) | |
>>> cfd2 == cfd | |
True | |
>>> cpd = ConditionalProbDist(cfd, SimpleGoodTuringProbDist) | |
>>> cpd2 = pickle.loads(pickle.dumps(cpd)) | |
>>> cpd['foo'].prob('hello') == cpd2['foo'].prob('hello') | |
True | |