Spaces:
Sleeping
Sleeping
File size: 5,172 Bytes
14c9181 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
from mmengine.config import Config, DictAction
from mmengine.registry import RUNNERS
from mmengine.runner import Runner
def parse_args():
parser = argparse.ArgumentParser(description='Test (and eval) a model')
parser.add_argument('config', help='Test config file path')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument(
'--work-dir',
help='The directory to save the file containing evaluation metrics')
parser.add_argument(
'--save-preds',
action='store_true',
help='Dump predictions to a pickle file for offline evaluation')
parser.add_argument(
'--show', action='store_true', help='Show prediction results')
parser.add_argument(
'--show-dir',
help='Directory where painted images will be saved. '
'If specified, it will be automatically saved '
'to the work_dir/timestamp/show_dir')
parser.add_argument(
'--wait-time', type=float, default=2, help='The interval of show (s)')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='Override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='Job launcher')
parser.add_argument(
'--tta', action='store_true', help='Test time augmentation')
# When using PyTorch version >= 2.0.0, the `torch.distributed.launch`
# will pass the `--local-rank` parameter to `tools/test.py` instead
# of `--local_rank`.
parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def trigger_visualization_hook(cfg, args):
default_hooks = cfg.default_hooks
if 'visualization' in default_hooks:
visualization_hook = default_hooks['visualization']
# Turn on visualization
visualization_hook['enable'] = True
visualization_hook['draw_gt'] = True
visualization_hook['draw_pred'] = True
if args.show:
visualization_hook['show'] = True
visualization_hook['wait_time'] = args.wait_time
if args.show_dir:
cfg.visualizer['save_dir'] = args.show_dir
cfg.visualizer['vis_backends'] = [dict(type='LocalVisBackend')]
else:
raise RuntimeError(
'VisualizationHook must be included in default_hooks.'
'refer to usage '
'"visualization=dict(type=\'VisualizationHook\')"')
return cfg
def main():
args = parse_args()
# load config
cfg = Config.fromfile(args.config)
cfg.launcher = args.launcher
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
cfg.load_from = args.checkpoint
# TODO: It will be supported after refactoring the visualizer
if args.show and args.show_dir:
raise NotImplementedError('--show and --show-dir cannot be set '
'at the same time')
if args.show or args.show_dir:
cfg = trigger_visualization_hook(cfg, args)
if args.tta:
cfg.test_dataloader.dataset.pipeline = cfg.tta_pipeline
cfg.tta_model.module = cfg.model
cfg.model = cfg.tta_model
# save predictions
if args.save_preds:
dump_metric = dict(
type='DumpResults',
out_file_path=osp.join(
cfg.work_dir,
f'{osp.basename(args.checkpoint)}_predictions.pkl'))
if isinstance(cfg.test_evaluator, (list, tuple)):
cfg.test_evaluator = list(cfg.test_evaluator)
cfg.test_evaluator.append(dump_metric)
else:
cfg.test_evaluator = [cfg.test_evaluator, dump_metric]
# build the runner from config
if 'runner_type' not in cfg:
# build the default runner
runner = Runner.from_cfg(cfg)
else:
# build customized runner from the registry
# if 'runner_type' is set in the cfg
runner = RUNNERS.build(cfg)
# start testing
runner.test()
if __name__ == '__main__':
main()
|