File size: 16,101 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
#
# Natural Language Toolkit: Twitter Tokenizer
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Christopher Potts <[email protected]>
#         Ewan Klein <[email protected]> (modifications)
#         Pierpaolo Pantone <> (modifications)
#         Tom Aarsen <> (modifications)
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
#


"""

Twitter-aware tokenizer, designed to be flexible and easy to adapt to new

domains and tasks. The basic logic is this:



1. The tuple REGEXPS defines a list of regular expression

   strings.



2. The REGEXPS strings are put, in order, into a compiled

   regular expression object called WORD_RE, under the TweetTokenizer

   class.



3. The tokenization is done by WORD_RE.findall(s), where s is the

   user-supplied string, inside the tokenize() method of the class

   TweetTokenizer.



4. When instantiating Tokenizer objects, there are several options:

    * preserve_case. By default, it is set to True. If it is set to

      False, then the tokenizer will downcase everything except for

      emoticons.

    * reduce_len. By default, it is set to False. It specifies whether

      to replace repeated character sequences of length 3 or greater

      with sequences of length 3.

    * strip_handles. By default, it is set to False. It specifies

      whether to remove Twitter handles of text used in the

      `tokenize` method.

    * match_phone_numbers. By default, it is set to True. It indicates

      whether the `tokenize` method should look for phone numbers.

"""


######################################################################

import html
from typing import List

import regex  # https://github.com/nltk/nltk/issues/2409

from nltk.tokenize.api import TokenizerI

######################################################################
# The following strings are components in the regular expression
# that is used for tokenizing. It's important that phone_number
# appears first in the final regex (since it can contain whitespace).
# It also could matter that tags comes after emoticons, due to the
# possibility of having text like
#
#     <:| and some text >:)
#
# Most importantly, the final element should always be last, since it
# does a last ditch whitespace-based tokenization of whatever is left.

# ToDo: Update with https://en.wikipedia.org/wiki/List_of_emoticons ?

# This particular element is used in a couple ways, so we define it
# with a name:
EMOTICONS = r"""

    (?:

      [<>]?

      [:;=8]                     # eyes

      [\-o\*\']?                 # optional nose

      [\)\]\(\[dDpP/\:\}\{@\|\\] # mouth

      |

      [\)\]\(\[dDpP/\:\}\{@\|\\] # mouth

      [\-o\*\']?                 # optional nose

      [:;=8]                     # eyes

      [<>]?

      |

      </?3                       # heart

    )"""

# URL pattern due to John Gruber, modified by Tom Winzig. See
# https://gist.github.com/winzig/8894715

URLS = r"""			# Capture 1: entire matched URL

  (?:

  https?:				# URL protocol and colon

    (?:

      /{1,3}				# 1-3 slashes

      |					#   or

      [a-z0-9%]				# Single letter or digit or '%'

                                       # (Trying not to match e.g. "URI::Escape")

    )

    |					#   or

                                       # looks like domain name followed by a slash:

    [a-z0-9.\-]+[.]

    (?:[a-z]{2,13})

    /

  )

  (?:					# One or more:

    [^\s()<>{}\[\]]+			# Run of non-space, non-()<>{}[]

    |					#   or

    \([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...)

    |

    \([^\s]+?\)				# balanced parens, non-recursive: (...)

  )+

  (?:					# End with:

    \([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...)

    |

    \([^\s]+?\)				# balanced parens, non-recursive: (...)

    |					#   or

    [^\s`!()\[\]{};:'".,<>?Β«Β»β€œβ€β€˜β€™]	# not a space or one of these punct chars

  )

  |					# OR, the following to match naked domains:

  (?:

  	(?<!@)			        # not preceded by a @, avoid matching foo@_gmail.com_

    [a-z0-9]+

    (?:[.\-][a-z0-9]+)*

    [.]

    (?:[a-z]{2,13})

    \b

    /?

    (?!@)			        # not succeeded by a @,

                            # avoid matching "foo.na" in "[email protected]"

  )

"""

# emoji flag sequence
# https://en.wikipedia.org/wiki/Regional_indicator_symbol
# For regex simplicity, include all possible enclosed letter pairs,
# not the ISO subset of two-letter regional indicator symbols.
# See https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Current_codes
# Future regional flag support may be handled with the regex for
# U+1F3F4 🏴 followed by emoji tag sequences:
# r'\U0001F3F4[\U000E0000-\U000E007E]{5}\U000E007F'
FLAGS = r"""

  (?:

    [\U0001F1E6-\U0001F1FF]{2}  # all enclosed letter pairs

    |

    # English flag

    \U0001F3F4\U000E0067\U000E0062\U000E0065\U000E006e\U000E0067\U000E007F

    |

    # Scottish flag

    \U0001F3F4\U000E0067\U000E0062\U000E0073\U000E0063\U000E0074\U000E007F

    |

    # For Wales? Why Richard, it profit a man nothing to give his soul for the whole world … but for Wales!

    \U0001F3F4\U000E0067\U000E0062\U000E0077\U000E006C\U000E0073\U000E007F

  )

"""

# Regex for recognizing phone numbers:
PHONE_REGEX = r"""

    (?:

      (?:            # (international)

        \+?[01]

        [ *\-.\)]*

      )?

      (?:            # (area code)

        [\(]?

        \d{3}

        [ *\-.\)]*

      )?

      \d{3}          # exchange

      [ *\-.\)]*

      \d{4}          # base

    )"""

# The components of the tokenizer:
REGEXPS = (
    URLS,
    # ASCII Emoticons
    EMOTICONS,
    # HTML tags:
    r"""<[^>\s]+>""",
    # ASCII Arrows
    r"""[\-]+>|<[\-]+""",
    # Twitter username:
    r"""(?:@[\w_]+)""",
    # Twitter hashtags:
    r"""(?:\#+[\w_]+[\w\'_\-]*[\w_]+)""",
    # email addresses
    r"""[\w.+-]+@[\w-]+\.(?:[\w-]\.?)+[\w-]""",
    # Zero-Width-Joiner and Skin tone modifier emojis
    """.(?:

        [\U0001F3FB-\U0001F3FF]?(?:\u200d.[\U0001F3FB-\U0001F3FF]?)+

        |

        [\U0001F3FB-\U0001F3FF]

    )""",
    # flags
    FLAGS,
    # Remaining word types:
    r"""

    (?:[^\W\d_](?:[^\W\d_]|['\-_])+[^\W\d_]) # Words with apostrophes or dashes.

    |

    (?:[+\-]?\d+[,/.:-]\d+[+\-]?)  # Numbers, including fractions, decimals.

    |

    (?:[\w_]+)                     # Words without apostrophes or dashes.

    |

    (?:\.(?:\s*\.){1,})            # Ellipsis dots.

    |

    (?:\S)                         # Everything else that isn't whitespace.

    """,
)

# Take the main components and add a phone regex as the second parameter
REGEXPS_PHONE = (REGEXPS[0], PHONE_REGEX, *REGEXPS[1:])

######################################################################
# TweetTokenizer.WORD_RE and TweetTokenizer.PHONE_WORD_RE represent
# the core tokenizing regexes. They are compiled lazily.

# WORD_RE performs poorly on these patterns:
HANG_RE = regex.compile(r"([^a-zA-Z0-9])\1{3,}")

# The emoticon string gets its own regex so that we can preserve case for
# them as needed:
EMOTICON_RE = regex.compile(EMOTICONS, regex.VERBOSE | regex.I | regex.UNICODE)

# These are for regularizing HTML entities to Unicode:
ENT_RE = regex.compile(r"&(#?(x?))([^&;\s]+);")

# For stripping away handles from a tweet:
HANDLES_RE = regex.compile(
    r"(?<![A-Za-z0-9_!@#\$%&*])@"
    r"(([A-Za-z0-9_]){15}(?!@)|([A-Za-z0-9_]){1,14}(?![A-Za-z0-9_]*@))"
)


######################################################################
# Functions for converting html entities
######################################################################


def _str_to_unicode(text, encoding=None, errors="strict"):
    if encoding is None:
        encoding = "utf-8"
    if isinstance(text, bytes):
        return text.decode(encoding, errors)
    return text


def _replace_html_entities(text, keep=(), remove_illegal=True, encoding="utf-8"):
    """

    Remove entities from text by converting them to their

    corresponding unicode character.



    :param text: a unicode string or a byte string encoded in the given

    `encoding` (which defaults to 'utf-8').



    :param list keep:  list of entity names which should not be replaced.\

    This supports both numeric entities (``&#nnnn;`` and ``&#hhhh;``)

    and named entities (such as ``&nbsp;`` or ``&gt;``).



    :param bool remove_illegal: If `True`, entities that can't be converted are\

    removed. Otherwise, entities that can't be converted are kept "as

    is".



    :returns: A unicode string with the entities removed.



    See https://github.com/scrapy/w3lib/blob/master/w3lib/html.py



        >>> from nltk.tokenize.casual import _replace_html_entities

        >>> _replace_html_entities(b'Price: &pound;100')

        'Price: \\xa3100'

        >>> print(_replace_html_entities(b'Price: &pound;100'))

        Price: Β£100

        >>>

    """

    def _convert_entity(match):
        entity_body = match.group(3)
        if match.group(1):
            try:
                if match.group(2):
                    number = int(entity_body, 16)
                else:
                    number = int(entity_body, 10)
                # Numeric character references in the 80-9F range are typically
                # interpreted by browsers as representing the characters mapped
                # to bytes 80-9F in the Windows-1252 encoding. For more info
                # see: https://en.wikipedia.org/wiki/ISO/IEC_8859-1#Similar_character_sets
                if 0x80 <= number <= 0x9F:
                    return bytes((number,)).decode("cp1252")
            except ValueError:
                number = None
        else:
            if entity_body in keep:
                return match.group(0)
            number = html.entities.name2codepoint.get(entity_body)
        if number is not None:
            try:
                return chr(number)
            except (ValueError, OverflowError):
                pass

        return "" if remove_illegal else match.group(0)

    return ENT_RE.sub(_convert_entity, _str_to_unicode(text, encoding))


######################################################################


class TweetTokenizer(TokenizerI):
    r"""

    Tokenizer for tweets.



        >>> from nltk.tokenize import TweetTokenizer

        >>> tknzr = TweetTokenizer()

        >>> s0 = "This is a cooool #dummysmiley: :-) :-P <3 and some arrows < > -> <--"

        >>> tknzr.tokenize(s0) # doctest: +NORMALIZE_WHITESPACE

        ['This', 'is', 'a', 'cooool', '#dummysmiley', ':', ':-)', ':-P', '<3', 'and', 'some', 'arrows', '<', '>', '->',

         '<--']



    Examples using `strip_handles` and `reduce_len parameters`:



        >>> tknzr = TweetTokenizer(strip_handles=True, reduce_len=True)

        >>> s1 = '@remy: This is waaaaayyyy too much for you!!!!!!'

        >>> tknzr.tokenize(s1)

        [':', 'This', 'is', 'waaayyy', 'too', 'much', 'for', 'you', '!', '!', '!']

    """

    # Values used to lazily compile WORD_RE and PHONE_WORD_RE,
    # which are the core tokenizing regexes.
    _WORD_RE = None
    _PHONE_WORD_RE = None

    ######################################################################

    def __init__(

        self,

        preserve_case=True,

        reduce_len=False,

        strip_handles=False,

        match_phone_numbers=True,

    ):
        """

        Create a `TweetTokenizer` instance with settings for use in the `tokenize` method.



        :param preserve_case: Flag indicating whether to preserve the casing (capitalisation)

            of text used in the `tokenize` method. Defaults to True.

        :type preserve_case: bool

        :param reduce_len: Flag indicating whether to replace repeated character sequences

            of length 3 or greater with sequences of length 3. Defaults to False.

        :type reduce_len: bool

        :param strip_handles: Flag indicating whether to remove Twitter handles of text used

            in the `tokenize` method. Defaults to False.

        :type strip_handles: bool

        :param match_phone_numbers: Flag indicating whether the `tokenize` method should look

            for phone numbers. Defaults to True.

        :type match_phone_numbers: bool

        """
        self.preserve_case = preserve_case
        self.reduce_len = reduce_len
        self.strip_handles = strip_handles
        self.match_phone_numbers = match_phone_numbers

    def tokenize(self, text: str) -> List[str]:
        """Tokenize the input text.



        :param text: str

        :rtype: list(str)

        :return: a tokenized list of strings; joining this list returns\

        the original string if `preserve_case=False`.

        """
        # Fix HTML character entities:
        text = _replace_html_entities(text)
        # Remove username handles
        if self.strip_handles:
            text = remove_handles(text)
        # Normalize word lengthening
        if self.reduce_len:
            text = reduce_lengthening(text)
        # Shorten problematic sequences of characters
        safe_text = HANG_RE.sub(r"\1\1\1", text)
        # Recognise phone numbers during tokenization
        if self.match_phone_numbers:
            words = self.PHONE_WORD_RE.findall(safe_text)
        else:
            words = self.WORD_RE.findall(safe_text)
        # Possibly alter the case, but avoid changing emoticons like :D into :d:
        if not self.preserve_case:
            words = list(
                map((lambda x: x if EMOTICON_RE.search(x) else x.lower()), words)
            )
        return words

    @property
    def WORD_RE(self) -> "regex.Pattern":
        """Core TweetTokenizer regex"""
        # Compiles the regex for this and all future instantiations of TweetTokenizer.
        if not type(self)._WORD_RE:
            type(self)._WORD_RE = regex.compile(
                f"({'|'.join(REGEXPS)})",
                regex.VERBOSE | regex.I | regex.UNICODE,
            )
        return type(self)._WORD_RE

    @property
    def PHONE_WORD_RE(self) -> "regex.Pattern":
        """Secondary core TweetTokenizer regex"""
        # Compiles the regex for this and all future instantiations of TweetTokenizer.
        if not type(self)._PHONE_WORD_RE:
            type(self)._PHONE_WORD_RE = regex.compile(
                f"({'|'.join(REGEXPS_PHONE)})",
                regex.VERBOSE | regex.I | regex.UNICODE,
            )
        return type(self)._PHONE_WORD_RE


######################################################################
# Normalization Functions
######################################################################


def reduce_lengthening(text):
    """

    Replace repeated character sequences of length 3 or greater with sequences

    of length 3.

    """
    pattern = regex.compile(r"(.)\1{2,}")
    return pattern.sub(r"\1\1\1", text)


def remove_handles(text):
    """

    Remove Twitter username handles from text.

    """
    # Substitute handles with ' ' to ensure that text on either side of removed handles are tokenized correctly
    return HANDLES_RE.sub(" ", text)


######################################################################
# Tokenization Function
######################################################################


def casual_tokenize(

    text,

    preserve_case=True,

    reduce_len=False,

    strip_handles=False,

    match_phone_numbers=True,

):
    """

    Convenience function for wrapping the tokenizer.

    """
    return TweetTokenizer(
        preserve_case=preserve_case,
        reduce_len=reduce_len,
        strip_handles=strip_handles,
        match_phone_numbers=match_phone_numbers,
    ).tokenize(text)


###############################################################################