Spaces:
Sleeping
Sleeping
File size: 32,272 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 |
# Natural Language Toolkit: Arc-Standard and Arc-eager Transition Based Parsers
#
# Author: Long Duong <[email protected]>
#
# Copyright (C) 2001-2023 NLTK Project
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
import pickle
import tempfile
from copy import deepcopy
from operator import itemgetter
from os import remove
try:
from numpy import array
from scipy import sparse
from sklearn import svm
from sklearn.datasets import load_svmlight_file
except ImportError:
pass
from nltk.parse import DependencyEvaluator, DependencyGraph, ParserI
class Configuration:
"""
Class for holding configuration which is the partial analysis of the input sentence.
The transition based parser aims at finding set of operators that transfer the initial
configuration to the terminal configuration.
The configuration includes:
- Stack: for storing partially proceeded words
- Buffer: for storing remaining input words
- Set of arcs: for storing partially built dependency tree
This class also provides a method to represent a configuration as list of features.
"""
def __init__(self, dep_graph):
"""
:param dep_graph: the representation of an input in the form of dependency graph.
:type dep_graph: DependencyGraph where the dependencies are not specified.
"""
# dep_graph.nodes contain list of token for a sentence
self.stack = [0] # The root element
self.buffer = list(range(1, len(dep_graph.nodes))) # The rest is in the buffer
self.arcs = [] # empty set of arc
self._tokens = dep_graph.nodes
self._max_address = len(self.buffer)
def __str__(self):
return (
"Stack : "
+ str(self.stack)
+ " Buffer : "
+ str(self.buffer)
+ " Arcs : "
+ str(self.arcs)
)
def _check_informative(self, feat, flag=False):
"""
Check whether a feature is informative
The flag control whether "_" is informative or not
"""
if feat is None:
return False
if feat == "":
return False
if flag is False:
if feat == "_":
return False
return True
def extract_features(self):
"""
Extract the set of features for the current configuration. Implement standard features as describe in
Table 3.2 (page 31) in Dependency Parsing book by Sandra Kubler, Ryan McDonal, Joakim Nivre.
Please note that these features are very basic.
:return: list(str)
"""
result = []
# Todo : can come up with more complicated features set for better
# performance.
if len(self.stack) > 0:
# Stack 0
stack_idx0 = self.stack[len(self.stack) - 1]
token = self._tokens[stack_idx0]
if self._check_informative(token["word"], True):
result.append("STK_0_FORM_" + token["word"])
if "lemma" in token and self._check_informative(token["lemma"]):
result.append("STK_0_LEMMA_" + token["lemma"])
if self._check_informative(token["tag"]):
result.append("STK_0_POS_" + token["tag"])
if "feats" in token and self._check_informative(token["feats"]):
feats = token["feats"].split("|")
for feat in feats:
result.append("STK_0_FEATS_" + feat)
# Stack 1
if len(self.stack) > 1:
stack_idx1 = self.stack[len(self.stack) - 2]
token = self._tokens[stack_idx1]
if self._check_informative(token["tag"]):
result.append("STK_1_POS_" + token["tag"])
# Left most, right most dependency of stack[0]
left_most = 1000000
right_most = -1
dep_left_most = ""
dep_right_most = ""
for (wi, r, wj) in self.arcs:
if wi == stack_idx0:
if (wj > wi) and (wj > right_most):
right_most = wj
dep_right_most = r
if (wj < wi) and (wj < left_most):
left_most = wj
dep_left_most = r
if self._check_informative(dep_left_most):
result.append("STK_0_LDEP_" + dep_left_most)
if self._check_informative(dep_right_most):
result.append("STK_0_RDEP_" + dep_right_most)
# Check Buffered 0
if len(self.buffer) > 0:
# Buffer 0
buffer_idx0 = self.buffer[0]
token = self._tokens[buffer_idx0]
if self._check_informative(token["word"], True):
result.append("BUF_0_FORM_" + token["word"])
if "lemma" in token and self._check_informative(token["lemma"]):
result.append("BUF_0_LEMMA_" + token["lemma"])
if self._check_informative(token["tag"]):
result.append("BUF_0_POS_" + token["tag"])
if "feats" in token and self._check_informative(token["feats"]):
feats = token["feats"].split("|")
for feat in feats:
result.append("BUF_0_FEATS_" + feat)
# Buffer 1
if len(self.buffer) > 1:
buffer_idx1 = self.buffer[1]
token = self._tokens[buffer_idx1]
if self._check_informative(token["word"], True):
result.append("BUF_1_FORM_" + token["word"])
if self._check_informative(token["tag"]):
result.append("BUF_1_POS_" + token["tag"])
if len(self.buffer) > 2:
buffer_idx2 = self.buffer[2]
token = self._tokens[buffer_idx2]
if self._check_informative(token["tag"]):
result.append("BUF_2_POS_" + token["tag"])
if len(self.buffer) > 3:
buffer_idx3 = self.buffer[3]
token = self._tokens[buffer_idx3]
if self._check_informative(token["tag"]):
result.append("BUF_3_POS_" + token["tag"])
# Left most, right most dependency of stack[0]
left_most = 1000000
right_most = -1
dep_left_most = ""
dep_right_most = ""
for (wi, r, wj) in self.arcs:
if wi == buffer_idx0:
if (wj > wi) and (wj > right_most):
right_most = wj
dep_right_most = r
if (wj < wi) and (wj < left_most):
left_most = wj
dep_left_most = r
if self._check_informative(dep_left_most):
result.append("BUF_0_LDEP_" + dep_left_most)
if self._check_informative(dep_right_most):
result.append("BUF_0_RDEP_" + dep_right_most)
return result
class Transition:
"""
This class defines a set of transition which is applied to a configuration to get another configuration
Note that for different parsing algorithm, the transition is different.
"""
# Define set of transitions
LEFT_ARC = "LEFTARC"
RIGHT_ARC = "RIGHTARC"
SHIFT = "SHIFT"
REDUCE = "REDUCE"
def __init__(self, alg_option):
"""
:param alg_option: the algorithm option of this parser. Currently support `arc-standard` and `arc-eager` algorithm
:type alg_option: str
"""
self._algo = alg_option
if alg_option not in [
TransitionParser.ARC_STANDARD,
TransitionParser.ARC_EAGER,
]:
raise ValueError(
" Currently we only support %s and %s "
% (TransitionParser.ARC_STANDARD, TransitionParser.ARC_EAGER)
)
def left_arc(self, conf, relation):
"""
Note that the algorithm for left-arc is quite similar except for precondition for both arc-standard and arc-eager
:param configuration: is the current configuration
:return: A new configuration or -1 if the pre-condition is not satisfied
"""
if (len(conf.buffer) <= 0) or (len(conf.stack) <= 0):
return -1
if conf.buffer[0] == 0:
# here is the Root element
return -1
idx_wi = conf.stack[len(conf.stack) - 1]
flag = True
if self._algo == TransitionParser.ARC_EAGER:
for (idx_parent, r, idx_child) in conf.arcs:
if idx_child == idx_wi:
flag = False
if flag:
conf.stack.pop()
idx_wj = conf.buffer[0]
conf.arcs.append((idx_wj, relation, idx_wi))
else:
return -1
def right_arc(self, conf, relation):
"""
Note that the algorithm for right-arc is DIFFERENT for arc-standard and arc-eager
:param configuration: is the current configuration
:return: A new configuration or -1 if the pre-condition is not satisfied
"""
if (len(conf.buffer) <= 0) or (len(conf.stack) <= 0):
return -1
if self._algo == TransitionParser.ARC_STANDARD:
idx_wi = conf.stack.pop()
idx_wj = conf.buffer[0]
conf.buffer[0] = idx_wi
conf.arcs.append((idx_wi, relation, idx_wj))
else: # arc-eager
idx_wi = conf.stack[len(conf.stack) - 1]
idx_wj = conf.buffer.pop(0)
conf.stack.append(idx_wj)
conf.arcs.append((idx_wi, relation, idx_wj))
def reduce(self, conf):
"""
Note that the algorithm for reduce is only available for arc-eager
:param configuration: is the current configuration
:return: A new configuration or -1 if the pre-condition is not satisfied
"""
if self._algo != TransitionParser.ARC_EAGER:
return -1
if len(conf.stack) <= 0:
return -1
idx_wi = conf.stack[len(conf.stack) - 1]
flag = False
for (idx_parent, r, idx_child) in conf.arcs:
if idx_child == idx_wi:
flag = True
if flag:
conf.stack.pop() # reduce it
else:
return -1
def shift(self, conf):
"""
Note that the algorithm for shift is the SAME for arc-standard and arc-eager
:param configuration: is the current configuration
:return: A new configuration or -1 if the pre-condition is not satisfied
"""
if len(conf.buffer) <= 0:
return -1
idx_wi = conf.buffer.pop(0)
conf.stack.append(idx_wi)
class TransitionParser(ParserI):
"""
Class for transition based parser. Implement 2 algorithms which are "arc-standard" and "arc-eager"
"""
ARC_STANDARD = "arc-standard"
ARC_EAGER = "arc-eager"
def __init__(self, algorithm):
"""
:param algorithm: the algorithm option of this parser. Currently support `arc-standard` and `arc-eager` algorithm
:type algorithm: str
"""
if not (algorithm in [self.ARC_STANDARD, self.ARC_EAGER]):
raise ValueError(
" Currently we only support %s and %s "
% (self.ARC_STANDARD, self.ARC_EAGER)
)
self._algorithm = algorithm
self._dictionary = {}
self._transition = {}
self._match_transition = {}
def _get_dep_relation(self, idx_parent, idx_child, depgraph):
p_node = depgraph.nodes[idx_parent]
c_node = depgraph.nodes[idx_child]
if c_node["word"] is None:
return None # Root word
if c_node["head"] == p_node["address"]:
return c_node["rel"]
else:
return None
def _convert_to_binary_features(self, features):
"""
:param features: list of feature string which is needed to convert to binary features
:type features: list(str)
:return : string of binary features in libsvm format which is 'featureID:value' pairs
"""
unsorted_result = []
for feature in features:
self._dictionary.setdefault(feature, len(self._dictionary))
unsorted_result.append(self._dictionary[feature])
# Default value of each feature is 1.0
return " ".join(
str(featureID) + ":1.0" for featureID in sorted(unsorted_result)
)
def _is_projective(self, depgraph):
arc_list = []
for key in depgraph.nodes:
node = depgraph.nodes[key]
if "head" in node:
childIdx = node["address"]
parentIdx = node["head"]
if parentIdx is not None:
arc_list.append((parentIdx, childIdx))
for (parentIdx, childIdx) in arc_list:
# Ensure that childIdx < parentIdx
if childIdx > parentIdx:
temp = childIdx
childIdx = parentIdx
parentIdx = temp
for k in range(childIdx + 1, parentIdx):
for m in range(len(depgraph.nodes)):
if (m < childIdx) or (m > parentIdx):
if (k, m) in arc_list:
return False
if (m, k) in arc_list:
return False
return True
def _write_to_file(self, key, binary_features, input_file):
"""
write the binary features to input file and update the transition dictionary
"""
self._transition.setdefault(key, len(self._transition) + 1)
self._match_transition[self._transition[key]] = key
input_str = str(self._transition[key]) + " " + binary_features + "\n"
input_file.write(input_str.encode("utf-8"))
def _create_training_examples_arc_std(self, depgraphs, input_file):
"""
Create the training example in the libsvm format and write it to the input_file.
Reference : Page 32, Chapter 3. Dependency Parsing by Sandra Kubler, Ryan McDonal and Joakim Nivre (2009)
"""
operation = Transition(self.ARC_STANDARD)
count_proj = 0
training_seq = []
for depgraph in depgraphs:
if not self._is_projective(depgraph):
continue
count_proj += 1
conf = Configuration(depgraph)
while len(conf.buffer) > 0:
b0 = conf.buffer[0]
features = conf.extract_features()
binary_features = self._convert_to_binary_features(features)
if len(conf.stack) > 0:
s0 = conf.stack[len(conf.stack) - 1]
# Left-arc operation
rel = self._get_dep_relation(b0, s0, depgraph)
if rel is not None:
key = Transition.LEFT_ARC + ":" + rel
self._write_to_file(key, binary_features, input_file)
operation.left_arc(conf, rel)
training_seq.append(key)
continue
# Right-arc operation
rel = self._get_dep_relation(s0, b0, depgraph)
if rel is not None:
precondition = True
# Get the max-index of buffer
maxID = conf._max_address
for w in range(maxID + 1):
if w != b0:
relw = self._get_dep_relation(b0, w, depgraph)
if relw is not None:
if (b0, relw, w) not in conf.arcs:
precondition = False
if precondition:
key = Transition.RIGHT_ARC + ":" + rel
self._write_to_file(key, binary_features, input_file)
operation.right_arc(conf, rel)
training_seq.append(key)
continue
# Shift operation as the default
key = Transition.SHIFT
self._write_to_file(key, binary_features, input_file)
operation.shift(conf)
training_seq.append(key)
print(" Number of training examples : " + str(len(depgraphs)))
print(" Number of valid (projective) examples : " + str(count_proj))
return training_seq
def _create_training_examples_arc_eager(self, depgraphs, input_file):
"""
Create the training example in the libsvm format and write it to the input_file.
Reference : 'A Dynamic Oracle for Arc-Eager Dependency Parsing' by Joav Goldberg and Joakim Nivre
"""
operation = Transition(self.ARC_EAGER)
countProj = 0
training_seq = []
for depgraph in depgraphs:
if not self._is_projective(depgraph):
continue
countProj += 1
conf = Configuration(depgraph)
while len(conf.buffer) > 0:
b0 = conf.buffer[0]
features = conf.extract_features()
binary_features = self._convert_to_binary_features(features)
if len(conf.stack) > 0:
s0 = conf.stack[len(conf.stack) - 1]
# Left-arc operation
rel = self._get_dep_relation(b0, s0, depgraph)
if rel is not None:
key = Transition.LEFT_ARC + ":" + rel
self._write_to_file(key, binary_features, input_file)
operation.left_arc(conf, rel)
training_seq.append(key)
continue
# Right-arc operation
rel = self._get_dep_relation(s0, b0, depgraph)
if rel is not None:
key = Transition.RIGHT_ARC + ":" + rel
self._write_to_file(key, binary_features, input_file)
operation.right_arc(conf, rel)
training_seq.append(key)
continue
# reduce operation
flag = False
for k in range(s0):
if self._get_dep_relation(k, b0, depgraph) is not None:
flag = True
if self._get_dep_relation(b0, k, depgraph) is not None:
flag = True
if flag:
key = Transition.REDUCE
self._write_to_file(key, binary_features, input_file)
operation.reduce(conf)
training_seq.append(key)
continue
# Shift operation as the default
key = Transition.SHIFT
self._write_to_file(key, binary_features, input_file)
operation.shift(conf)
training_seq.append(key)
print(" Number of training examples : " + str(len(depgraphs)))
print(" Number of valid (projective) examples : " + str(countProj))
return training_seq
def train(self, depgraphs, modelfile, verbose=True):
"""
:param depgraphs : list of DependencyGraph as the training data
:type depgraphs : DependencyGraph
:param modelfile : file name to save the trained model
:type modelfile : str
"""
try:
input_file = tempfile.NamedTemporaryFile(
prefix="transition_parse.train", dir=tempfile.gettempdir(), delete=False
)
if self._algorithm == self.ARC_STANDARD:
self._create_training_examples_arc_std(depgraphs, input_file)
else:
self._create_training_examples_arc_eager(depgraphs, input_file)
input_file.close()
# Using the temporary file to train the libsvm classifier
x_train, y_train = load_svmlight_file(input_file.name)
# The parameter is set according to the paper:
# Algorithms for Deterministic Incremental Dependency Parsing by Joakim Nivre
# Todo : because of probability = True => very slow due to
# cross-validation. Need to improve the speed here
model = svm.SVC(
kernel="poly",
degree=2,
coef0=0,
gamma=0.2,
C=0.5,
verbose=verbose,
probability=True,
)
model.fit(x_train, y_train)
# Save the model to file name (as pickle)
pickle.dump(model, open(modelfile, "wb"))
finally:
remove(input_file.name)
def parse(self, depgraphs, modelFile):
"""
:param depgraphs: the list of test sentence, each sentence is represented as a dependency graph where the 'head' information is dummy
:type depgraphs: list(DependencyGraph)
:param modelfile: the model file
:type modelfile: str
:return: list (DependencyGraph) with the 'head' and 'rel' information
"""
result = []
# First load the model
model = pickle.load(open(modelFile, "rb"))
operation = Transition(self._algorithm)
for depgraph in depgraphs:
conf = Configuration(depgraph)
while len(conf.buffer) > 0:
features = conf.extract_features()
col = []
row = []
data = []
for feature in features:
if feature in self._dictionary:
col.append(self._dictionary[feature])
row.append(0)
data.append(1.0)
np_col = array(sorted(col)) # NB : index must be sorted
np_row = array(row)
np_data = array(data)
x_test = sparse.csr_matrix(
(np_data, (np_row, np_col)), shape=(1, len(self._dictionary))
)
# It's best to use decision function as follow BUT it's not supported yet for sparse SVM
# Using decision function to build the votes array
# dec_func = model.decision_function(x_test)[0]
# votes = {}
# k = 0
# for i in range(len(model.classes_)):
# for j in range(i+1, len(model.classes_)):
# #if dec_func[k] > 0:
# votes.setdefault(i,0)
# votes[i] +=1
# else:
# votes.setdefault(j,0)
# votes[j] +=1
# k +=1
# Sort votes according to the values
# sorted_votes = sorted(votes.items(), key=itemgetter(1), reverse=True)
# We will use predict_proba instead of decision_function
prob_dict = {}
pred_prob = model.predict_proba(x_test)[0]
for i in range(len(pred_prob)):
prob_dict[i] = pred_prob[i]
sorted_Prob = sorted(prob_dict.items(), key=itemgetter(1), reverse=True)
# Note that SHIFT is always a valid operation
for (y_pred_idx, confidence) in sorted_Prob:
# y_pred = model.predict(x_test)[0]
# From the prediction match to the operation
y_pred = model.classes_[y_pred_idx]
if y_pred in self._match_transition:
strTransition = self._match_transition[y_pred]
baseTransition = strTransition.split(":")[0]
if baseTransition == Transition.LEFT_ARC:
if (
operation.left_arc(conf, strTransition.split(":")[1])
!= -1
):
break
elif baseTransition == Transition.RIGHT_ARC:
if (
operation.right_arc(conf, strTransition.split(":")[1])
!= -1
):
break
elif baseTransition == Transition.REDUCE:
if operation.reduce(conf) != -1:
break
elif baseTransition == Transition.SHIFT:
if operation.shift(conf) != -1:
break
else:
raise ValueError(
"The predicted transition is not recognized, expected errors"
)
# Finish with operations build the dependency graph from Conf.arcs
new_depgraph = deepcopy(depgraph)
for key in new_depgraph.nodes:
node = new_depgraph.nodes[key]
node["rel"] = ""
# With the default, all the token depend on the Root
node["head"] = 0
for (head, rel, child) in conf.arcs:
c_node = new_depgraph.nodes[child]
c_node["head"] = head
c_node["rel"] = rel
result.append(new_depgraph)
return result
def demo():
"""
>>> from nltk.parse import DependencyGraph, DependencyEvaluator
>>> from nltk.parse.transitionparser import TransitionParser, Configuration, Transition
>>> gold_sent = DependencyGraph(\"""
... Economic JJ 2 ATT
... news NN 3 SBJ
... has VBD 0 ROOT
... little JJ 5 ATT
... effect NN 3 OBJ
... on IN 5 ATT
... financial JJ 8 ATT
... markets NNS 6 PC
... . . 3 PU
... \""")
>>> conf = Configuration(gold_sent)
###################### Check the Initial Feature ########################
>>> print(', '.join(conf.extract_features()))
STK_0_POS_TOP, BUF_0_FORM_Economic, BUF_0_LEMMA_Economic, BUF_0_POS_JJ, BUF_1_FORM_news, BUF_1_POS_NN, BUF_2_POS_VBD, BUF_3_POS_JJ
###################### Check The Transition #######################
Check the Initialized Configuration
>>> print(conf)
Stack : [0] Buffer : [1, 2, 3, 4, 5, 6, 7, 8, 9] Arcs : []
A. Do some transition checks for ARC-STANDARD
>>> operation = Transition('arc-standard')
>>> operation.shift(conf)
>>> operation.left_arc(conf, "ATT")
>>> operation.shift(conf)
>>> operation.left_arc(conf,"SBJ")
>>> operation.shift(conf)
>>> operation.shift(conf)
>>> operation.left_arc(conf, "ATT")
>>> operation.shift(conf)
>>> operation.shift(conf)
>>> operation.shift(conf)
>>> operation.left_arc(conf, "ATT")
Middle Configuration and Features Check
>>> print(conf)
Stack : [0, 3, 5, 6] Buffer : [8, 9] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (5, 'ATT', 4), (8, 'ATT', 7)]
>>> print(', '.join(conf.extract_features()))
STK_0_FORM_on, STK_0_LEMMA_on, STK_0_POS_IN, STK_1_POS_NN, BUF_0_FORM_markets, BUF_0_LEMMA_markets, BUF_0_POS_NNS, BUF_1_FORM_., BUF_1_POS_., BUF_0_LDEP_ATT
>>> operation.right_arc(conf, "PC")
>>> operation.right_arc(conf, "ATT")
>>> operation.right_arc(conf, "OBJ")
>>> operation.shift(conf)
>>> operation.right_arc(conf, "PU")
>>> operation.right_arc(conf, "ROOT")
>>> operation.shift(conf)
Terminated Configuration Check
>>> print(conf)
Stack : [0] Buffer : [] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (5, 'ATT', 4), (8, 'ATT', 7), (6, 'PC', 8), (5, 'ATT', 6), (3, 'OBJ', 5), (3, 'PU', 9), (0, 'ROOT', 3)]
B. Do some transition checks for ARC-EAGER
>>> conf = Configuration(gold_sent)
>>> operation = Transition('arc-eager')
>>> operation.shift(conf)
>>> operation.left_arc(conf,'ATT')
>>> operation.shift(conf)
>>> operation.left_arc(conf,'SBJ')
>>> operation.right_arc(conf,'ROOT')
>>> operation.shift(conf)
>>> operation.left_arc(conf,'ATT')
>>> operation.right_arc(conf,'OBJ')
>>> operation.right_arc(conf,'ATT')
>>> operation.shift(conf)
>>> operation.left_arc(conf,'ATT')
>>> operation.right_arc(conf,'PC')
>>> operation.reduce(conf)
>>> operation.reduce(conf)
>>> operation.reduce(conf)
>>> operation.right_arc(conf,'PU')
>>> print(conf)
Stack : [0, 3, 9] Buffer : [] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (0, 'ROOT', 3), (5, 'ATT', 4), (3, 'OBJ', 5), (5, 'ATT', 6), (8, 'ATT', 7), (6, 'PC', 8), (3, 'PU', 9)]
###################### Check The Training Function #######################
A. Check the ARC-STANDARD training
>>> import tempfile
>>> import os
>>> input_file = tempfile.NamedTemporaryFile(prefix='transition_parse.train', dir=tempfile.gettempdir(), delete=False)
>>> parser_std = TransitionParser('arc-standard')
>>> print(', '.join(parser_std._create_training_examples_arc_std([gold_sent], input_file)))
Number of training examples : 1
Number of valid (projective) examples : 1
SHIFT, LEFTARC:ATT, SHIFT, LEFTARC:SBJ, SHIFT, SHIFT, LEFTARC:ATT, SHIFT, SHIFT, SHIFT, LEFTARC:ATT, RIGHTARC:PC, RIGHTARC:ATT, RIGHTARC:OBJ, SHIFT, RIGHTARC:PU, RIGHTARC:ROOT, SHIFT
>>> parser_std.train([gold_sent],'temp.arcstd.model', verbose=False)
Number of training examples : 1
Number of valid (projective) examples : 1
>>> input_file.close()
>>> remove(input_file.name)
B. Check the ARC-EAGER training
>>> input_file = tempfile.NamedTemporaryFile(prefix='transition_parse.train', dir=tempfile.gettempdir(),delete=False)
>>> parser_eager = TransitionParser('arc-eager')
>>> print(', '.join(parser_eager._create_training_examples_arc_eager([gold_sent], input_file)))
Number of training examples : 1
Number of valid (projective) examples : 1
SHIFT, LEFTARC:ATT, SHIFT, LEFTARC:SBJ, RIGHTARC:ROOT, SHIFT, LEFTARC:ATT, RIGHTARC:OBJ, RIGHTARC:ATT, SHIFT, LEFTARC:ATT, RIGHTARC:PC, REDUCE, REDUCE, REDUCE, RIGHTARC:PU
>>> parser_eager.train([gold_sent],'temp.arceager.model', verbose=False)
Number of training examples : 1
Number of valid (projective) examples : 1
>>> input_file.close()
>>> remove(input_file.name)
###################### Check The Parsing Function ########################
A. Check the ARC-STANDARD parser
>>> result = parser_std.parse([gold_sent], 'temp.arcstd.model')
>>> de = DependencyEvaluator(result, [gold_sent])
>>> de.eval() >= (0, 0)
True
B. Check the ARC-EAGER parser
>>> result = parser_eager.parse([gold_sent], 'temp.arceager.model')
>>> de = DependencyEvaluator(result, [gold_sent])
>>> de.eval() >= (0, 0)
True
Remove test temporary files
>>> remove('temp.arceager.model')
>>> remove('temp.arcstd.model')
Note that result is very poor because of only one training example.
"""
|