File size: 13,035 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# Natural Language Toolkit: Confusion Matrices
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Edward Loper <[email protected]>
#         Steven Bird <[email protected]>
#         Tom Aarsen <>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

from nltk.probability import FreqDist


class ConfusionMatrix:
    """

    The confusion matrix between a list of reference values and a

    corresponding list of test values.  Entry *[r,t]* of this

    matrix is a count of the number of times that the reference value

    *r* corresponds to the test value *t*.  E.g.:



        >>> from nltk.metrics import ConfusionMatrix

        >>> ref  = 'DET NN VB DET JJ NN NN IN DET NN'.split()

        >>> test = 'DET VB VB DET NN NN NN IN DET NN'.split()

        >>> cm = ConfusionMatrix(ref, test)

        >>> print(cm['NN', 'NN'])

        3



    Note that the diagonal entries *Ri=Tj* of this matrix

    corresponds to correct values; and the off-diagonal entries

    correspond to incorrect values.

    """

    def __init__(self, reference, test, sort_by_count=False):
        """

        Construct a new confusion matrix from a list of reference

        values and a corresponding list of test values.



        :type reference: list

        :param reference: An ordered list of reference values.

        :type test: list

        :param test: A list of values to compare against the

            corresponding reference values.

        :raise ValueError: If ``reference`` and ``length`` do not have

            the same length.

        """
        if len(reference) != len(test):
            raise ValueError("Lists must have the same length.")

        # Get a list of all values.
        if sort_by_count:
            ref_fdist = FreqDist(reference)
            test_fdist = FreqDist(test)

            def key(v):
                return -(ref_fdist[v] + test_fdist[v])

            values = sorted(set(reference + test), key=key)
        else:
            values = sorted(set(reference + test))

        # Construct a value->index dictionary
        indices = {val: i for (i, val) in enumerate(values)}

        # Make a confusion matrix table.
        confusion = [[0 for _ in values] for _ in values]
        max_conf = 0  # Maximum confusion
        for w, g in zip(reference, test):
            confusion[indices[w]][indices[g]] += 1
            max_conf = max(max_conf, confusion[indices[w]][indices[g]])

        #: A list of all values in ``reference`` or ``test``.
        self._values = values
        #: A dictionary mapping values in ``self._values`` to their indices.
        self._indices = indices
        #: The confusion matrix itself (as a list of lists of counts).
        self._confusion = confusion
        #: The greatest count in ``self._confusion`` (used for printing).
        self._max_conf = max_conf
        #: The total number of values in the confusion matrix.
        self._total = len(reference)
        #: The number of correct (on-diagonal) values in the matrix.
        self._correct = sum(confusion[i][i] for i in range(len(values)))

    def __getitem__(self, li_lj_tuple):
        """

        :return: The number of times that value ``li`` was expected and

        value ``lj`` was given.

        :rtype: int

        """
        (li, lj) = li_lj_tuple
        i = self._indices[li]
        j = self._indices[lj]
        return self._confusion[i][j]

    def __repr__(self):
        return f"<ConfusionMatrix: {self._correct}/{self._total} correct>"

    def __str__(self):
        return self.pretty_format()

    def pretty_format(

        self,

        show_percents=False,

        values_in_chart=True,

        truncate=None,

        sort_by_count=False,

    ):
        """

        :return: A multi-line string representation of this confusion matrix.

        :type truncate: int

        :param truncate: If specified, then only show the specified

            number of values.  Any sorting (e.g., sort_by_count)

            will be performed before truncation.

        :param sort_by_count: If true, then sort by the count of each

            label in the reference data.  I.e., labels that occur more

            frequently in the reference label will be towards the left

            edge of the matrix, and labels that occur less frequently

            will be towards the right edge.



        @todo: add marginals?

        """
        confusion = self._confusion

        values = self._values
        if sort_by_count:
            values = sorted(
                values, key=lambda v: -sum(self._confusion[self._indices[v]])
            )

        if truncate:
            values = values[:truncate]

        if values_in_chart:
            value_strings = ["%s" % val for val in values]
        else:
            value_strings = [str(n + 1) for n in range(len(values))]

        # Construct a format string for row values
        valuelen = max(len(val) for val in value_strings)
        value_format = "%" + repr(valuelen) + "s | "
        # Construct a format string for matrix entries
        if show_percents:
            entrylen = 6
            entry_format = "%5.1f%%"
            zerostr = "     ."
        else:
            entrylen = len(repr(self._max_conf))
            entry_format = "%" + repr(entrylen) + "d"
            zerostr = " " * (entrylen - 1) + "."

        # Write the column values.
        s = ""
        for i in range(valuelen):
            s += (" " * valuelen) + " |"
            for val in value_strings:
                if i >= valuelen - len(val):
                    s += val[i - valuelen + len(val)].rjust(entrylen + 1)
                else:
                    s += " " * (entrylen + 1)
            s += " |\n"

        # Write a dividing line
        s += "{}-+-{}+\n".format("-" * valuelen, "-" * ((entrylen + 1) * len(values)))

        # Write the entries.
        for val, li in zip(value_strings, values):
            i = self._indices[li]
            s += value_format % val
            for lj in values:
                j = self._indices[lj]
                if confusion[i][j] == 0:
                    s += zerostr
                elif show_percents:
                    s += entry_format % (100.0 * confusion[i][j] / self._total)
                else:
                    s += entry_format % confusion[i][j]
                if i == j:
                    prevspace = s.rfind(" ")
                    s = s[:prevspace] + "<" + s[prevspace + 1 :] + ">"
                else:
                    s += " "
            s += "|\n"

        # Write a dividing line
        s += "{}-+-{}+\n".format("-" * valuelen, "-" * ((entrylen + 1) * len(values)))

        # Write a key
        s += "(row = reference; col = test)\n"
        if not values_in_chart:
            s += "Value key:\n"
            for i, value in enumerate(values):
                s += "%6d: %s\n" % (i + 1, value)

        return s

    def key(self):
        values = self._values
        str = "Value key:\n"
        indexlen = len(repr(len(values) - 1))
        key_format = "  %" + repr(indexlen) + "d: %s\n"
        for i in range(len(values)):
            str += key_format % (i, values[i])

        return str

    def recall(self, value):
        """Given a value in the confusion matrix, return the recall

        that corresponds to this value. The recall is defined as:



        - *r* = true positive / (true positive + false positive)



        and can loosely be considered the ratio of how often ``value``

        was predicted correctly relative to how often ``value`` was

        the true result.



        :param value: value used in the ConfusionMatrix

        :return: the recall corresponding to ``value``.

        :rtype: float

        """
        # Number of times `value` was correct, and also predicted
        TP = self[value, value]
        # Number of times `value` was correct
        TP_FN = sum(self[value, pred_value] for pred_value in self._values)
        if TP_FN == 0:
            return 0.0
        return TP / TP_FN

    def precision(self, value):
        """Given a value in the confusion matrix, return the precision

        that corresponds to this value. The precision is defined as:



        - *p* = true positive / (true positive + false negative)



        and can loosely be considered the ratio of how often ``value``

        was predicted correctly relative to the number of predictions

        for ``value``.



        :param value: value used in the ConfusionMatrix

        :return: the precision corresponding to ``value``.

        :rtype: float

        """
        # Number of times `value` was correct, and also predicted
        TP = self[value, value]
        # Number of times `value` was predicted
        TP_FP = sum(self[real_value, value] for real_value in self._values)
        if TP_FP == 0:
            return 0.0
        return TP / TP_FP

    def f_measure(self, value, alpha=0.5):
        """

        Given a value used in the confusion matrix, return the f-measure

        that corresponds to this value. The f-measure is the harmonic mean

        of the ``precision`` and ``recall``, weighted by ``alpha``.

        In particular, given the precision *p* and recall *r* defined by:



        - *p* = true positive / (true positive + false negative)

        - *r* = true positive / (true positive + false positive)



        The f-measure is:



        - *1/(alpha/p + (1-alpha)/r)*



        With ``alpha = 0.5``, this reduces to:



        - *2pr / (p + r)*



        :param value: value used in the ConfusionMatrix

        :param alpha: Ratio of the cost of false negative compared to false

            positives. Defaults to 0.5, where the costs are equal.

        :type alpha: float

        :return: the F-measure corresponding to ``value``.

        :rtype: float

        """
        p = self.precision(value)
        r = self.recall(value)
        if p == 0.0 or r == 0.0:
            return 0.0
        return 1.0 / (alpha / p + (1 - alpha) / r)

    def evaluate(self, alpha=0.5, truncate=None, sort_by_count=False):
        """

        Tabulate the **recall**, **precision** and **f-measure**

        for each value in this confusion matrix.



        >>> reference = "DET NN VB DET JJ NN NN IN DET NN".split()

        >>> test = "DET VB VB DET NN NN NN IN DET NN".split()

        >>> cm = ConfusionMatrix(reference, test)

        >>> print(cm.evaluate())

        Tag | Prec.  | Recall | F-measure

        ----+--------+--------+-----------

        DET | 1.0000 | 1.0000 | 1.0000

         IN | 1.0000 | 1.0000 | 1.0000

         JJ | 0.0000 | 0.0000 | 0.0000

         NN | 0.7500 | 0.7500 | 0.7500

         VB | 0.5000 | 1.0000 | 0.6667

        <BLANKLINE>



        :param alpha: Ratio of the cost of false negative compared to false

            positives, as used in the f-measure computation. Defaults to 0.5,

            where the costs are equal.

        :type alpha: float

        :param truncate: If specified, then only show the specified

            number of values. Any sorting (e.g., sort_by_count)

            will be performed before truncation. Defaults to None

        :type truncate: int, optional

        :param sort_by_count: Whether to sort the outputs on frequency

            in the reference label. Defaults to False.

        :type sort_by_count: bool, optional

        :return: A tabulated recall, precision and f-measure string

        :rtype: str

        """
        tags = self._values

        # Apply keyword parameters
        if sort_by_count:
            tags = sorted(tags, key=lambda v: -sum(self._confusion[self._indices[v]]))
        if truncate:
            tags = tags[:truncate]

        tag_column_len = max(max(len(tag) for tag in tags), 3)

        # Construct the header
        s = (
            f"{' ' * (tag_column_len - 3)}Tag | Prec.  | Recall | F-measure\n"
            f"{'-' * tag_column_len}-+--------+--------+-----------\n"
        )

        # Construct the body
        for tag in tags:
            s += (
                f"{tag:>{tag_column_len}} | "
                f"{self.precision(tag):<6.4f} | "
                f"{self.recall(tag):<6.4f} | "
                f"{self.f_measure(tag, alpha=alpha):.4f}\n"
            )

        return s


def demo():
    reference = "DET NN VB DET JJ NN NN IN DET NN".split()
    test = "DET VB VB DET NN NN NN IN DET NN".split()
    print("Reference =", reference)
    print("Test    =", test)
    print("Confusion matrix:")
    print(ConfusionMatrix(reference, test))
    print(ConfusionMatrix(reference, test).pretty_format(sort_by_count=True))

    print(ConfusionMatrix(reference, test).recall("VB"))


if __name__ == "__main__":
    demo()